【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十六两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了16两(袋子重量忽略不计),问黄金、白银每枚各重多少两?
科目:初中数学 来源: 题型:
【题目】(本题10分)对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+,ka+b)(k为常数,k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).
(1) ① 点P(-1,-2)的“2属派生点”P′的坐标为_______________
② 若点P的“k属派生点”为P′(3,3),请写出一个符合条件的点P的坐标_____________
(2) 若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,则k的值为____________
(3) 如图,点Q的坐标为(0, ),点A在函数(x<0)的图象上,且点A是点B的“属派生点”.当线段BQ最短时,求B点坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:且、、分别是点、、在数轴上对应的数.
(1)求点与点的距离;
(2)若甲、乙两个动点分别从、两点同时出发,沿数轴正方向运动,它们的速度分别是2和1(单位长度/秒),求甲追上乙时所用的时间;
(3)在(2)的条件下,甲动点向数轴正方向运动,乙动点向数轴负方向运动.当甲动点开始运动时,丙动点以4个单位长度/秒的速度和甲动点同时从点向数轴正方向运动,当丙动点遇到乙动点时立即返回向数轴负方向运动,当遇到甲动点时也马上返回,如此往复直到甲乙两动点相遇则停止运动,设甲乙两动点在点处相遇,求从开始到停止运动,丙动点走的总路程以及点对应的数字.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图△ABC中,AB=AC=12cm,BC=9cm,若点Q在线段CA上以4cm/s的速度由点C向点A运动,点P在BC线段上以3cm/s的速度由B向C运动,求多长时间点Q与点P第一次在哪条边上相遇?( )
A.24s BC边B.12s BC边
C.24s AB边D.12s AC边
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则△BCG的周长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,高AD和BE所在的直线交于点H,且BH=AC,则∠ABC等于( )
A. 45° B. 120° C. 45°或135° D. 45°或120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在四边形ABCD中,对角线AC、BD相交于点E,且AC⊥BD,作BF⊥CD,垂足为点F,BF与AC交于点C,∠BGE=∠ADE.
(1)如图1,求证:AD=CD;
(2)如图2,BH是△ABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于△ADE面积的2倍.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】 在多项式的乘法公式中,完全平方公式是其中重要的一个.
(1)请你补全完全平方公式的推导过程:
(a+b)2=(a+b)(a+b)=a2+______+______+b2=a2+______+b2
(2)如图,将边长为a+b的正方形分割成I,Ⅱ,Ⅲ,Ⅳ四部分,请用不同的方法分别表示出这个正方形的面积,并结合图形给出完全平方公式的几何解释.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com