精英家教网 > 初中数学 > 题目详情

【题目】如图,点A的坐标为(4,2).将点A绕坐标原点O旋转90°后,再向左平移1个单位长度得到点A′,则过点A′的正比例函数的解析式为_____

【答案】y=﹣xy=-4x

【解析】

直接利用旋转的性质结合平移的性质得出对应点位置,再利用待定系数法求出正比例函数解析式.

当点A绕坐标原点O逆时针旋转90°后,再向左平移1个单位长度得到点A′,

A′(-3,4),

设过点A′的正比例函数的解析式为:y=kx,

4=-3k,

解得:k=-

则过点A′的正比例函数的解析式为:y=-x,

同理可得:点A绕坐标原点O顺时针旋转90°后,再向左平移1个单位长度得到点A′,此时A′(1,-4),

设过点A′的正比例函数的解析式为:y=k′x,

-4=k′,

则过点A′的正比例函数的解析式为:y=-4x.

故答案为:y=﹣xy=-4x.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是_________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十六两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了16两(袋子重量忽略不计),问黄金、白银每枚各重多少两?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在平面直角坐标系中,点O为坐标原点,点Ax轴的负半轴上,直线y=﹣x+x轴、y轴分别交于B、C两点,四边形ABCD为菱形.

(1)如图1,求点A的坐标;

(2)如图2,连接AC,点PACD内一点,连接AP、BP,BPAC交于点G,且∠APB=60°,点E在线段AP上,点F在线段BP上,且BF=AE,连接AF、EF,若∠AFE=30°,求AF2+EF2的值;

(3)如图3,在(2)的条件下,当PE=AE时,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知如图:点(1,3)在函数y=(x>0)的图象上,矩形ABCD的边BCx轴上,E是对角线BD的中点,函数y=(x>0)的图象又经过A、E两点,点E的横坐标为m,解答下列问题:

(1)k的值;

(2)求点A的坐标;(用含m代数式表示)

(3)当∠ABD=45°时,求m的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点A、D、C、F在同一条直线上,AD=CF,AB=DE,BC=EF.

(1)求证:ΔABC△DEF;

(2)若∠A=55°,B=88°,求∠F的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。

(1)若∠ACD=114°,求∠MAB的度数;

(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某学校组织学生乘汽车去自然保护区野营,先以60km/h的速度走平路,后又以30km/h的速度爬坡,共用了6.5h;原路返回时,汽车以40km/h的速度下坡,又以50km/h的速度走平路,共用了6 h。问平路和坡路各有多远?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知ABC,AB=AC,D为直线BC上一点,E为直线AC上一点,AD=AE BAD=αCDE=β

(1)如图点D在线段BC上,点E在线段AC上.

如果ABC=60°ADE=70° 那么α=_______,β=_______

αβ之间的关系式.

(2)是否存在不同于以上中的αβ之间的关系式?存在,求出这个关系式,不存在,说明理由.

查看答案和解析>>

同步练习册答案