精英家教网 > 初中数学 > 题目详情

【题目】已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BFAC交于点C,BGE=ADE.

(1)如图1,求证:AD=CD;

(2)如图2,BHABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍.

【答案】(1)证明见解析;(2)ACD、ABE、BCE、BHG.

【解析】(1)由AC⊥BD、BF⊥CD知∠ADE+∠DAE=∠CGF+∠GCF,根据∠BGE=∠ADE=∠CGF得出∠DAE=∠GCF即可得;

(2)设DE=a,先得出AE=2DE=2a、EG=DE=a、AH=HE=a、CE=AE=2a,据此知S△ADC=2a2=2S△ADE,证△ADE≌△BGE得BE=AE=2a,再分别求出S△ABE、S△ACE、S△BHG,从而得出答案.

(1)∵∠BGE=∠ADE,∠BGE=∠CGF,

∴∠ADE=∠CGF,

∵AC⊥BD、BF⊥CD,

∴∠ADE+∠DAE=∠CGF+∠GCF,

∴∠DAE=∠GCF,

∴AD=CD;

(2)设DE=a,

则AE=2DE=2a,EG=DE=a,

∴S△ADE=AE×DE=×2a×a=a2

∵BH是△ABE的中线,

∴AH=HE=a,

∵AD=CD、AC⊥BD,

∴CE=AE=2a,

则S△ADC=ACDE=(2a+2a)a=2a2=2S△ADE

在△ADE和△BGE中,

∴△ADE≌△BGE(ASA),

∴BE=AE=2a,

∴S△ABE=AEBE=(2a)2a=2a2

S△ACE=CEBE=(2a)2a=2a2

S△BHG=HGBE=(a+a)2a=2a2

综上,面积等于△ADE面积的2倍的三角形有△ACD、△ABE、△BCE、△BHG.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,AB=BC,ABC=100°,BD是ABC的平分线,E是AB的中点.

(1)证明DEBC;(2)求EDB的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线ABCD相交于点O,下列条件中,不能说明ABCD的是(  )

A. AOD90°

B. AOC=∠BOC

C. BOC+∠BOD180°

D. AOC+∠BOD180°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市在一次市政施工中,有两段长度相等的人行道铺设任务,分别交给甲、乙两个施工队同时进行施工.如图是反映所铺设人行道的长度y(米)与施工时间x(时)之间关系的部分图象.请解答下列问题:
(1)求乙队在2≤x≤6的时间段内,y与x的函数关系式;
(2)若甲队施工速度不变,乙队在施工6小时后,施工速度增加到12米/时,结果两队同时完成了任务.求甲队从开始施工到完成,所铺设的人行道共是多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题提出:用水平线和竖直线将平面分成若干个面积为1的小长方形格子,小长方形的顶点叫格点,以格点为顶点的多边形叫格点多边形.设格点多边形的面积为S,它各边上格点的个数和为x,多边形内部的格点数为n,S与x,n之间是否存在一定的数量关系呢?
(1)问题探究:
如图1,图中所示的格点多边形,其内部都只有一个格点,它们的面积与各边上格点的个数和的对应关系如下表,请填写下表并写出S与x之间的关系式S=

多边形的序号

多边形的面积S

2

2.5

3

4

各边上格点的个数和x

4


(2)在图2中所示的格点多边形,这些多边形内部都有且只有2个格点.探究此时所画的各个多边形的面积S与它各边上格点的个数和x之间的关系式S=
(3)请继续探索,当格点多边形内部有且只有n(n是正整数)个格点时,猜想S与x,n之间的关系式S=(用含有字母x,n的代数式表示)
(4)问题拓展:
请在正三角形网格中的类似问题进行探究:在图3、4中正三角形网格中每个小正三角形面积为1,小正三角形的顶点为格点,以格点为顶点的多边形称为格点多边形,图是该正三角形格点中的两个多边形.
根据图中提供的信息填表:

格点多边形各边上的格点的个数

格点多边形内部的格点个数

格点多边形的面积

多边形1(图3)

8

1

8

多边形2(图4)

7

3

11

一般格点多边形

a

b

S

则S与a,b之间的关系为S=(用含a,b的代数式表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABCD的周长为36,对角线AC,BD相交于点O.点E是CD的中点,BD=12,则△DOE的周长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,DBC边上一点,AD=BD,AB=AC=CD,求∠BAC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点D是等边△ABC内一点,DA=8,BD=10,CD=6,则∠ADC的度数是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1.在菱形ABCD中,AB=2 ,tan∠ABC=2,∠BCD=α,点E从点D出发,以每秒1个单位长度的速度沿着射线DA的方向匀速运动,设运动时间为t(秒),将线段CE绕点C顺时针旋转α度,得到对应线段CF,连接BD、EF,BD交EC、EF于点P、Q.

(1)求证:△ECF∽△BCD;
(2)当t为何值时,△ECF≌△BCD?
(3)当t为何值时,△EPQ是直角三角形?

查看答案和解析>>

同步练习册答案