精英家教网 > 初中数学 > 题目详情

【题目】如图,在ABC中,AB=BC,ABC=100°,BD是ABC的平分线,E是AB的中点.

(1)证明DEBC;(2)求EDB的度数.

【答案】(1)详见解析;(2)50°.

【解析】

(1)根据等腰三角形三线合一的性质可得DAC的中点,已知又EAB的中点,由此可得ED△ABC的中位线,根据三角形的中位线定理即可证得DE∥BC;(2)根据等腰三角形三线合一的性质可得∠DBA=∠CBD=50°,由平行线的性质即可得∠EDB =∠CBD=50°

(1)证明:∵BD是等腰△ABC∠ABC的平分线,

∴DAC的中点,

EAB的中点,

∴ED△ABC的中位线,

∴DE∥BC.

(2)∵∠ABC=100°,BD∠ABC的平分线,

∴∠DBA=∠CBD=50°,

∵DE∥BC,

∠EDB =∠CBD=50°

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点E在正方形ABCD的对角线AC上,且EC=2AE,直角三角形FEG的两直角边EF、EG分别交BC、DC于点M、N.若正方形ABCD的边长为a,则重叠部分四边形EMCN的面积为(
A. a2
B. a2
C. a2
D. a2

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,OA⊥OB,AB⊥x轴于点C,点A( ,1)在反比例函数y= 的图象上.

(1)求反比例函数y= 的表达式;
(2)在x轴的负半轴上存在一点P,使得SAOP= SAOB , 求点P的坐标;
(3)若将△BOA绕点B按逆时针方向旋转60°得到△BDE.直接写出点E的坐标,并判断点E是否在该反比例函数的图象上.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在下面的方格纸中,找出互相平行的线段,并用符号表示出来:____________________.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=﹣x2+bx+c与x轴交于点A(﹣1,0)、B(3,0).

(1)求b、c的值;
(2)如图1直线y=kx+1(k>0)与抛物线第一象限的部分交于D点,交y轴于F点,交线段BC于E点.求 的最大值;
(3)如图2,抛物线的对称轴与抛物线交于点P、与直线BC相交于点M,连接PB.问在直线BC下方的抛物线上是否存在点Q,使得△QMB与△PMB的面积相等?若存在,求出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,菱形ABCD的对角线AC和BD交于点O,分别过点C、D作CE∥BD,DE∥AC,CE和DE交于点E.
(1)求证:四边形ODEC是矩形;
(2)当∠ADB=60°,AD=2 时,求sin∠AED的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1P点从点A开始以2厘米/秒的速度沿ABC的方向移动,点Q从点C开始以1厘米/秒的速度沿CAB的方向移动,在直角三角形ABC中,∠A90°,若AB16厘米,AC12厘米,BC20厘米,如果PQ同时出发,用t(秒)表示移动时间,那么:

1)如图1,若P在线段AB上运动,Q在线段CA上运动,试求出t为何值时,QAAP

2)如图2,点QCA上运动,试求出t为何值时,三角形QAB的面积等于三角形ABC面积的

3)如图3,当P点到达C点时,PQ两点都停止运动,试求当t为何值时,线段AQ的长度等于线段BP的长的

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线AB与CD相交于点O,OE⊥AB,OF⊥CD,OP是∠BOC的平分线.

(1)请写出图中所有∠EOC的补角 ____________________

(2)如果∠POC:∠EOC=2:5.求∠BOF的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:在四边形ABCD中,对角线AC、BD相交于点E,且ACBD,作BFCD,垂足为点F,BFAC交于点C,BGE=ADE.

(1)如图1,求证:AD=CD;

(2)如图2,BHABE的中线,若AE=2DE,DE=EG,在不添加任何辅助线的情况下,请直接写出图2中四个三角形,使写出的每个三角形的面积都等于ADE面积的2倍.

查看答案和解析>>

同步练习册答案