【题目】(本题10分)对于平面直角坐标系xOy中的点P(a,b),若点P的坐标为(a+,ka+b)(k为常数,k≠0),则称点P′为点P的“k属派生点”.例如:P(1,4)的“2属派生点”为P′(1+,2×1+4),即P′(3,6).
(1) ① 点P(-1,-2)的“2属派生点”P′的坐标为_______________
② 若点P的“k属派生点”为P′(3,3),请写出一个符合条件的点P的坐标_____________
(2) 若点P在x轴的正半轴上,点P的“k属派生点”为P′点,且△OPP′为等腰直角三角形,则k的值为____________
(3) 如图,点Q的坐标为(0, ),点A在函数(x<0)的图象上,且点A是点B的“属派生点”.当线段BQ最短时,求B点坐标.
【答案】(1)①;②(1,2)(答案不唯一);(2);(3).
【解析】试题分析:(1)①根据派生点的定义,点P的“2属派生点” 的坐标为(, ),即.
②答案不唯一,只需横、纵坐标之和为3即可,如(1,2).
(2)若点P在x轴的正半轴上,则P(a,0),点P的“k属派生点”为点为(, ).
∵且△为等腰直角三角形,∴.
(3)求出点B所在的直线,根据垂直线段最短的性质即可求得B点坐标.
试题解析:(1)①.
②.(1,2).
(2).
(3)设B(a,b).
∵B的“属派生点”是A,∴.
∵点A还在反比例函数的图象上,
∴.∴.
∵,∴.∴.
∴B在直线上.
过Q作的垂线QB1,垂足为B1,
∵,且线段BQ最短,∴B1即为所求的点B.
∴易求得.
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,
(1) 取点M(1,0),则点M到直线l: 的距离为_________,取直线与直线l平行,则两直线距离为_________.
(2) 已知点P为抛物线y=x2-4x的x轴上方一点,且点P到直线l: 的距离为,求点P的坐标.
(3) 若直线y=kx+m与抛物线y=x2-4x相交于x轴上方两点A、B(A在B的左边),且∠AOB=90°,求点P(2,0)到直线y=kx+m的距离的最大时直线y=kx+m的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC的顶点A在原点,B,C坐标分别为B(3,0),C(2,2),将△ABC向左平移1个单位后再向下平移2单位,可得到△A′B′C′.
(1)请画出平移后的△A′B′C′的图形;
(2)写出△A′B′C′各个顶点的坐标;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若直线y=kx+k﹣1经过点(m,n+3)和(m+1,2n﹣1),且0<k<2,则n的取值范围是( )
A. 0<n<2B. 0<n<4C. 2<n<6D. 4<n<6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】)在信宜市某“三华李”种植基地有A,B两个品种的树苗出售,已知A种比B种每株多2元,买1株A种树苗和2株B种树苗共需20元.
(1)问A,B两种树苗每株分别是多少元?
(2)为扩大种植,某农户准备购买A,B两种树苗共360株,且A种树苗数量不少于B种数量的一半,请求出费用最省的购买方案.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com