【题目】已知:且、、分别是点、、在数轴上对应的数.
(1)求点与点的距离;
(2)若甲、乙两个动点分别从、两点同时出发,沿数轴正方向运动,它们的速度分别是2和1(单位长度/秒),求甲追上乙时所用的时间;
(3)在(2)的条件下,甲动点向数轴正方向运动,乙动点向数轴负方向运动.当甲动点开始运动时,丙动点以4个单位长度/秒的速度和甲动点同时从点向数轴正方向运动,当丙动点遇到乙动点时立即返回向数轴负方向运动,当遇到甲动点时也马上返回,如此往复直到甲乙两动点相遇则停止运动,设甲乙两动点在点处相遇,求从开始到停止运动,丙动点走的总路程以及点对应的数字.
【答案】(1)1;(2)甲追上乙时所用的时间为6秒;(3)丙动点运动的总路程为8个单位长度,点D对应的数是3.
【解析】
(1))利用绝对值的非负性,求出a,b,c的值,再求两点间距离即可;
(2)先求出甲、乙两个动点的速度差,再根据时间=路程÷速度计算即可求出答案;
(3)先求出甲与乙相遇时所需要的时间,求丙动点运动的总路程,求出点A走的路程,再求点D对应的数即可.
解:(1)∵|a+1|≥0,(5﹣b)2≥0,|c+2|≥0, |a+1|+(5﹣b)2+|c+2|=0,
∴a+1=0,5﹣b=0,c+2=0,
∴a=﹣1,b=5,c=﹣2.
∴AC=(-1)-(-2)=1
(2)由题意,AB=5-(-1)=6
∴6÷(2-1)=6
答:甲追上乙时所用的时间为6秒.
(3)根据题意,甲与乙相遇时所需要的时间为
6÷(2+1)=2
∴丙动点运动的总路程为2×4=8个单位长度,
∵点A的速度为2
∴点A走的路程为2×2=4
∴点D对应的数是(-1)+4=3
答:丙动点运动的总路程为8个单位长度,点D对应的数是3.
科目:初中数学 来源: 题型:
【题目】如图,矩形ABCD的顶点A,B在x轴上,且关于y轴对称,反比例函数y=(x>0)的图象经过点C,反比例函数y=(x<0)的图象分别与AD,CD交于点E,F,若S△BEF=7,k1+3k2=0,则k1等于_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,点P在线段AB外,且PA=PB,求证:点P在线段AB的垂直平分线上,在证明该结论时,需添加辅助线,则作法不正确的是( )
A. 作∠APB的平分线PC交AB于点C
B. 过点P作PC⊥AB于点C且AC=BC
C. 取AB中点C,连接PC
D. 过点P作PC⊥AB,垂足为C
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,已知AB=AC,D为∠BAC的角平分线上面一点,连接BD,CD;如图2,已知AB=AC,D、E为∠BAC的角平分线上面两点,连接BD,CD,BE,CE;如图3,已知AB=AC,D、E、F为∠BAC的角平分线上面三点,连接BD,CD,BE,CE,BF,CF;…,依次规律,第n个图形中有全等三角形的对数是_________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)有理数、、在数轴上的对应点如图所示,化简代数式:
(2)哈市某垃圾处理场一周处理生活垃圾任务为210吨,计划每天处理30吨,由于各种原因,实际每天处理量与计划相比有出入,某周七天的实际处理情况记录如下:
+6;-3;+4;-1;+2;-5;0
①垃圾场这一周实际处理生活垃圾是多少吨?
②若该垃圾场实行计量工资,每处理一吨生活垃圾给300元,同时又规定超额处理一吨垃圾另外奖100元,完不成任务的少处理一吨另外扣100元,那么该场工人这一周的工资总额是多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,厘米,,厘米,点为的中点,如果点在线段上以厘米/秒的速度由点向点运动,同时点在线段上由点向点运动.当一个点停止运动时,另一个点也随之停止运动.
(1)用含有的代数式表示,则_______厘米;
(2)若点的运动速度与点的运动速度相等,经过秒后,与是否全等,请说明理由;
(3)若点的运动速度与点的运动速度不相等,那么当点的运动速度为多少时,能够使与全等?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是轮滑场地的截面示意图,平台AB距x轴(水平)18米,与y轴交于点B,与滑道y=(x≥1)交于点A,且AB=1米.运动员(看成点)在BA方向获得速度v米/秒后,从A处向右下飞向滑道,点M是下落路线的某位置.忽略空气阻力,实验表明:M,A的竖直距离h(米)与飞出时间t(秒)的平方成正比,且t=1时h=5,M,A的水平距离是vt米.
(1)求k,并用t表示h;
(2)设v=5.用t表示点M的横坐标x和纵坐标y,并求y与x的关系式(不写x的取值范围),及y=13时运动员与正下方滑道的竖直距离;
(3)若运动员甲、乙同时从A处飞出,速度分别是5米/秒、v乙米/秒.当甲距x轴1.8米,且乙位于甲右侧超过4.5米的位置时,直接写出t的值及v乙的范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等,交易其一,金轻十六两,问金、银一枚各重几何?”意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等,两袋互相交换1枚后,甲袋比乙袋轻了16两(袋子重量忽略不计),问黄金、白银每枚各重多少两?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB∥CD,以点A为圆心,小于AC长为半径作圆弧,分别交AB,AC于E,F两点,再分别以E,F为圆心,大于EF长为半径作圆弧,两条圆弧交于点P,作射线AP,交CD于点M。
(1)若∠ACD=114°,求∠MAB的度数;
(2)若CN⊥AM,垂足为N,求证:△ACN≌△MCN。
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com