精英家教网 > 初中数学 > 题目详情

【题目】如图,已知函数yx+1yax+3的图象交于点P,点P的横坐标为1

1)关于xy的方程组 的解是   

2a   

3)求出函数yx+1yax+3的图象与x轴围成的几何图形的面积.

【答案】(1);(2)-1;(3)4

【解析】

1)先求出点P12),再把P点代入解析式即可解答.

2)把P12)代入yax+3,即可解答.

3)根据yx+1x轴的交点为(﹣10),y=﹣x+3x轴的交点为(30),即可得到这两个交点之间的距离,再根据三角形的面积公式,即可解答.

1)把x1代入yx+1,得出y2

函数yx+1yax+3的图象交于点P12),

x1y2同时满足两个一次函数的解析式.

所以关于xy的方程组 的解是

故答案为

2)把P12)代入yax+3

2a+3,解得a=﹣1

故答案为﹣1

3)∵函数yx+1x轴的交点为(﹣10),

y=﹣x+3x轴的交点为(30),

∴这两个交点之间的距离为3﹣(﹣1)=4

P12),

∴函数yx+1yax+3的图象与x轴围成的几何图形的面积为:×4×24

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】目前节能灯在城市已基本普及,今年山东省面向县级及农村地区推广节能灯,为响应号召,某商场计划购进甲、乙两种节能灯共1200只,这两种节能灯的进价、售价如下表:

进价(/)

售价(/)

25

30

45

60

(1)如何进货,进货款恰好为46000元?

(2)如何进货,商场销售完节能灯时获利最多且不超过进货价的30%,此时利润为多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】《代数学》中记载,形如x2+10x=39的方程,求正数解的几何方法是:“如图1,先构造一个面积为x2的正方形,再以正方形的边长为一边向外构造四个面积为x的矩形,得到大正方形的面积为39+25=64,则该方程的正数解为8-5=3”,小聪按此方法解关于x的方程x2+6x+m=0时,构造出如图2所示的图形,己知阴影部分的面积为36,则该方程的正数解为( )

A.6B.3-3C.3-2D.3-

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人进行比赛的路程与时间的关系如图所示.

(1)这是一场________米比赛;

(2)前一半赛程内________的速度较快,最终________赢得了比赛;

(3)两人第________秒在途中相遇,相遇时距终点________米;

(4)甲在前8秒的平均速度是多少?甲在整个赛程的平均速度是多少?乙在前8秒的平均速度是多少?乙在整个赛程的平均速度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】.如图,在平面直角坐标系xOy,直线y=kx+b(k0)与双曲线相交于点A(m,3),B(-6,n),x轴交于点C.

(1)求直线y=kx+b(k0)的解析式;

(2)若点Px轴上,SACP=SBOC,求点P的坐标(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为响应国家的“节能减排”政策,某厂家开发了一种新型的电动车,如图,它的大灯A射出的光线AB、AC与地面MN的夹角分别为22°和31°,AT⊥MN,垂足为T,大灯照亮地面的宽度BC的长为m.

1)求BT的长(不考虑其他因素).

(2)一般正常人从发现危险到做出刹车动作的反应时间是0.2s,从发现危险到电动车完全停下所行驶的距离叫做最小安全距离.某人以20km/h的速度驾驶该车,从做出刹车动作到电动车停止的刹车距离是请判断该车大灯的设计是否能满足最小安全距离的要求(大灯与前轮前端间水平距离忽略不计),并说明理由.

(参考数据:sin22°tan22°sin31°tan31°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,一个点从数轴上的原点开始,先向右移动3个单位长度,再向左移动5个单位长度,可以看到终点表示的数是-2,已知点A,B是数轴上的点,请参照图并思考,完成下列各题.

(1)如果点A表示数-3,将点A向右移动7个单位长度,那么终点B表示的数是_____,A,B两点间的距离是_____;

(2)如果点A表示数3,将A点向左移动7个单位长度,再向右移动5个单位长度,那么终点表示的数是_____,A,B两点间的距离为_____;

(3)如果点A表示数-4,将A点向右移动168个单位长度,再向左移动256个单位长度,那么终点B表示的数是_____,A、B两点间的距离是_____;

(4)一般地,如果A点表示的数为m,将A点向右移动n个单位长度,再向左移动p个单位长度,那么请你猜想终点B表示什么数?A,B两点间的距离为多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对某一个函数给出如下定义:若存在实数M0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1

1)分别判断函数 y=x0)和y=x+1﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;

2)若函数y=﹣x+1a≤x≤bba)的边界值是2,且这个函数的最大值也是2,求b的取值范围;

3)将函数 y=x2﹣1≤x≤mm≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足≤t≤1

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)如图(1)在RtΔABC中,∠ACB=900,∠B=600,在图中作出∠ACB的三等分线CD,CE.(要求:尺规作图,保留痕迹,不定作法)

(2)由(1)知,我们可以用尺规作出直角的三等分线,但是仅仅使用尺规却不能把任意一个角分成三等分,为此,人们发明了许多等分角的机械器具,如图(2)是用三张硬纸片自制的一个最简单的三分角器,与半圆O相接的AB带的长度与半圆的半径相等:BD带的长度任意,它的一边与直线AC形成一个直角,且志半圆相切于点B,假设需要将∠KSM三等分,如图(3),首先将角的顶点S置于BD上,角的一边SK经过点A,另一边SM与半圆相切,连接SO,则SB,SO为∠KSM的三等分线,请你证明。

图(1) 图(2) 图(3)

查看答案和解析>>

同步练习册答案