分析 首先根据题意画出符合题意的所有图形,然后利用等腰三角形求解即可求得答案.
解答
解:(1)如图,△ABC中,AB=AC,BD=AD,AC=CD,求∠BAC的度数.
∵AB=AC,BD=AD,AC=CD,
∴∠B=∠C=∠BAD,∠CDA=∠CAD,
∵∠CDA=2∠B,
∴∠CAB=3∠B,
∵∠BAC+∠B+∠C=180°,
∴5∠B=180°,
∴∠B=36°,
∴∠BAC=108°.
(2)如图,△ABC中,AB=AC,AD=BD=CD,求∠BAC的度数.![]()
∵AB=AC,AD=BD=CD,
∴∠B=∠C=∠DAC=∠DAB
∴∠BAC=2∠B
∵∠BAC+∠B+∠C=180°,
∴4∠B=180°,
∴∠B=45°,
∴∠BAC=90°.
(3)如图,△ABC中,AB=AC,BD=AD=BC,求∠BAC的度数.
∵AB=AC,BD=AD=BC,
∴∠B=∠C,∠A=∠ABD,∠BDC=∠C![]()
∵∠BDC=2∠A,
∴∠C=2∠A=∠B,
∵∠A+∠ABC+∠C=180°,
∴5∠A=180°,
∴∠A=36°.
(4)如图,△ABC中,AB=AC,BD=AD,CD=BC,求∠BAC的度数.
假设∠A=x°,AD=BD,
∴∠DBA=x°,
∵AB=AC,![]()
∴∠C=$\frac{180-x}{2}$,
∵CD=BC,
∴∠BDC=2x=∠DBC=$\frac{180-x}{2}$-x,
解得:x=$\frac{180}{7}$.
∴∠A=$\frac{180°}{7}$.
故答案为:36°,90°,108°,$\frac{180°}{7}$.
点评 此题主要考查等腰三角形的性质,三角形外角的性质及三角形内角和定理的综合运用.注意分类讨论思想的应用是解此题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com