6£®Èçͼ1£¬ÔÚÆ½ÃæÖ±½Ç×ø±êϵÖУ¬µãOÎª×ø±êÔ­µã£¬Ö±Ïßy=kx+4kÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬ÒÔAO¡¢BOΪÁÚ±ß×÷¾ØÐÎAOBC£¬ÆäÃæ»ýÊÇ8£®
£¨1£©ÇóÖ±ÏßABµÄ½âÎöʽ£»
£¨2£©Èçͼ2£¬µãP´ÓµãO³ö·¢£¬ÑØÏß¶ÎOAÏòÖÕµãAÔ˶¯£¬ËÙ¶ÈΪÿÃë2¸öµ¥Î»³¤¶È£¬µãQ´ÓµãB³ö·¢£¬ÑØÏß¶ÎBOÏòÖÕµãOÔ˶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£¬Á¬½ÓPQ£¬P¡¢QÁ½µãͬʱ³ö·¢£¬Ô˶¯Ê±¼äΪtÃ룬µ±tΪºÎֵʱ£¬¡÷CPQµÄÃæ»ýΪ$\frac{13}{4}$£»
£¨3£©Èçͼ3£¬ÔÚ£¨2£©µÄÌõ¼þÏ£¬µ±t=1ʱ£¬P¡¢QÁ½µãͬʱֹͣÔ˶¯£¬ÔÚxÖáÉÏÊÇ·ñ´æÔÚµãM£¬Ê¹µÃ¡ÏMQP=45¡ã£¿Èô´æÔÚ£¬Çó³öµãM×ø±ê£¬Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¸ù¾Ý¾ØÐεÄÃæ»ý¹«Ê½£¬¿ÉµÃBµã×ø±ê£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£»
£¨2£©¸ù¾ÝͼÐθ·¨£¬¿ÉµÃ¹ØÓÚtµÄ·½³Ì£¬¸ù¾Ý½â·½³Ì£¬¿ÉµÃ´ð°¸£»
£¨3£©¸ù¾Ý¹´¹É¶¨Àí£¬¹´¹É¶¨ÀíÄæ¶¨Àí£¬¿ÉµÃ¡ÏNPQ=90¡ã£¬¡ÏPON=45¡ã£¬¸ù¾Ý´ý¶¨ÏµÊý·¨£¬¿ÉµÃº¯Êý½âÎöʽ£¬¸ù¾Ý×Ô±äÁ¿Ó뺯ÊýÖµµÄ¶ÔÓ¦¹ØÏµ£¬¿ÉµÃ´ð°¸£®

½â´ð ½â£º£¨1£©ÓÉÖ±Ïßy=kx+4kÓëxÖá½»ÓÚµãA£¬ÓëyÖá½»ÓÚµãB£¬µÃ
µ±x=0ʱ£¬y=4k£¬¼´Bµã×ø±êΪ£¨0£¬4k£©£¬
µ±y=0ʱ£¬kx+4k=0£¬½âµÃx=-4£¬¼´£¨-4£¬0£©£¬
ÓÉAO¡¢BOΪÁÚ±ß×÷¾ØÐÎAOBC£¬ÆäÃæ»ýÊÇ8£¬µÃ
4¡Á4k=8£¬½âµÃk=$\frac{1}{2}$£¬
Ö±ÏßABµÄ½âÎöʽÊÇy=$\frac{1}{2}$x+2£»
£¨2£©ÓɵãP´ÓµãO³ö·¢£¬ÑØÏß¶ÎOAÏòÖÕµãAÔ˶¯£¬ËÙ¶ÈΪÿÃë2¸öµ¥Î»³¤¶È£¬µãQ´ÓµãB³ö·¢£¬ÑØÏß¶ÎBOÏòÖÕµãOÔ˶¯£¬ËÙ¶ÈΪÿÃë1¸öµ¥Î»³¤¶È£¬µÃ
PO=2t£¬AP=4-2t£¬QB=t£¬OQ=2-t£®
ÓÉS¡÷CPQ=S¾ØÐÎACBO-S¡÷ACP-S¡÷POQ-S¡÷BCQ=$\frac{13}{4}$£¬
8-$\frac{1}{2}$£¨4-2t£©¡Á2-$\frac{1}{2}$•2t£¨2-t£©-$\frac{1}{2}$¡Á4t=$\frac{13}{4}$£¬
½âµÃt=$\frac{1}{2}$»òt=$\frac{3}{2}$£¬
µ±t=$\frac{1}{2}$»òt=$\frac{3}{2}$ʱ£¬¡÷CPQµÄÃæ»ýΪ$\frac{13}{4}$£»
£¨3£©´æÔÚ£¬µãM×ø±êΪ£¨-$\frac{1}{3}$£¬0£©
Èçͼ£º

t=1ʱ£¬P£¨-2£¬0£©£¬Q£¨0£¬1£©£¬
È¡N£¨-1£¬-2£©£¬
PQ2=5£¬PN25£¬BN2=10£¬
PQ2+PN2=NQ2£¬PQ=PN£®
¡ÏNPQ=90¡ã£¬¡ÏPON=45¡ã£®
ÉèNQµÄ½âÎöʽΪy=kx+b£¬½«Q¡¢NµÄ×ø±ê´úÈ룬µÃ
$\left\{\begin{array}{l}{b=1}\\{-k+b=-2}\end{array}\right.$£¬
½âµÃ$\left\{\begin{array}{l}{b=1}\\{k=3}\end{array}\right.$£¬
NQµÄ½âÎöʽΪy=3x+1£¬
µ±y=0ʱ£¬3x+1=0£¬
½âµÃx=-$\frac{1}{3}$£¬
¼´M£¨-$\frac{1}{3}$£¬0£©

µãÆÀ ±¾Ì⿼²éÁËÒ»´Îº¯Êý×ÛºÏÌ⣬ÀûÓþÙÐеÄÃæ»ýµÃ³öBµã×ø±êÊǽâÌâ¹Ø¼ü£»ÀûÓÃͼÐθ·¨µÃ³ö¹ØÓÚtµÄ·½³ÌÊǽâÌâ¹Ø¼ü£»ÀûÓù´¹É¶¨Àí¡¢¹´¹É¶¨ÀíµÄÄæ¶¨ÀíµÃ³ö¡ÏPQNÊǽâÌâ¹Ø¼ü£®

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®´ÓµÈÑüÈý½ÇÐεÄijһ¸ö¶¥µã³ö·¢×÷Ò»ÌõÖ±Ïߣ¬Èç¹ûÇ¡ºÃÄܰÑÕâ¸öÈý½ÇÐηֳÉÁ½¸ö½ÏСµÄµÈÑüÈý½ÇÐΣ¬ÔòÔ­µÈÑüÈý½ÇÐεĶ¥½ÇÊÇ36¡ã£¬90¡ã£¬108¡ã£¬$\frac{180¡ã}{7}$  ¶È£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

5£®¹Û²ìÏÂÁÐÊýµÄÅÅÁйæÂÉ£º$\frac{1}{3}$£¬$\frac{2}{8}$£¬$\frac{3}{15}$£¬$\frac{4}{24}$¡­¿ÉÖªµÚn¸öÊýÊÇ$\frac{n}{£¨n+1£©^{2}-1}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖªÒ»´Îº¯Êýy=mx+n£¬ÇÒm-2n=4£¬ÄÇôËüÒ»¶¨¾­¹ýµÄµã×ø±êÊÇ£¨-$\frac{1}{2}$£¬-2£©£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

1£®£¨1£©ÒÑÖª£ºA=$\frac{1}{1+\sqrt{2}}$+$\frac{1}{\sqrt{2}+\sqrt{3}}$+$\frac{1}{\sqrt{3}+\sqrt{4}}$+¡­$\frac{1}{\sqrt{99}+\sqrt{100}}$£¬B=$\frac{1}{\sqrt{2}+2\sqrt{1}}$+$\frac{1}{2\sqrt{3}+3\sqrt{2}}$+$\frac{1}{3\sqrt{4}+4\sqrt{3}}$+¡­$\frac{1}{99\sqrt{100}+100\sqrt{99}}$£¬ÇóA-BµÄÖµ£¿
£¨2£©½â·½³Ì×飺$\left\{\begin{array}{l}{xy=2x+y-1}\\{yz=2z+3y-8}\\{zx=4z+3x-8}\end{array}\right.$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

11£®-9¡¢6¡¢-3ÕâÈý¸öÊýËüÃǾø¶ÔÖµµÄºÍÊÇ18£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

18£®ÊµÊýa£¬b£¬cÔÚÊýÖáÉÏÈçͼËùʾ£º»¯¼ò|a+b|+a-$\sqrt{c^2}$-|b-c|£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

15£®Ä³µØµÄ¹ú¼Ê±ê׼ʱ¼ä£¨GMT£©ÊÇÖ¸¸ÃµØÓë¸ñÁÖÄáÖΣ¨GREENWICH£©µÄʱ²î£¬ÒÔÏÂΪͬһʱ¿Ì5¸ö³ÇÊеĹú¼Ê±ê׼ʱ¼ä£¨ÕýÊý±íʾµ±µØÊ±¼ä±È¸ñÁÖÄáÖÎʱ¼äÔçµÄʱÊý£¬¸ºÊý±íʾµ±µØÊ±¼ä±È¸ñÁÖÄáÖÎʱ¼ä³ÙµÄʱÊý£©£º
³ÇÊÐÂ׶ر±¾©¶«¾©¶àÂ×¶àŦԼ
¹ú¼Ê±ê׼ʱ¼ä0+8+9-4-5
±±¾©Ê±¼ä10ÔÂ12ÈÕÔçÉÏ10µãʱ£¬ÄÇôŦԼµÄµ±µØÊ±¼äÊÇ10ÔÂ11ÈÕ21µã£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èçͼ£¬¶ÔÈÎÒâµÄÎå½ÇÐÇ£¬½áÂÛÕýÈ·µÄÊÇ£¨¡¡¡¡£©
A£®¡ÏA+¡ÏB+¡ÏC+¡ÏD+¡ÏE=90¡ãB£®¡ÏA+¡ÏB+¡ÏC+¡ÏD+¡ÏE=180¡ã
C£®¡ÏA+¡ÏB+¡ÏC+¡ÏD+¡ÏE=270¡ãD£®¡ÏA+¡ÏB+¡ÏC+¡ÏD+¡ÏE=360¡ã

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸