精英家教网 > 初中数学 > 题目详情
已知正方形ABCD的边长为2,点P是BC上的一点,将△DCP沿DP折叠至△DPQ,若DQ,DP恰好与如图所示的以正方形ABCD的中心O为圆心的⊙O相切,则折痕DP的长为(  )
A.
2
3
3
B.
4
3
3
C.
2
3
5
D.
4
3
5

连接OD,
∵O为正方形ABCD的中心,
∴∠ADO=∠CDO,
又∵DQ与DP都为圆O的切线,
∴DO平分∠PDQ,即∠PDO=∠QDO,
∴∠ADO-∠QDO=∠CDO-∠PDO,即∠ADQ=∠CDP,
又∵将△DCP沿DP折叠至△DPQ,
∴∠CDP=∠PDQ,
∴∠CDP=∠PDQ=∠ADQ=
1
3
∠ADC=30°,
在Rt△PCD中,设CP=x,则DP=2x,CD=2,
根据勾股定理得:DP2=CD2+CP2,即4x2=x2+22
解得:x=
2
3
3

∴DP=2x=
4
3
3

故选B.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

含30°角的直角三角板ABC中,∠A=30°.将其绕直角顶点C顺时针旋转α角(0°<α<120°且α≠90°),得到Rt△A'B'C,A'C边与AB所在直线交于点D,过点D作DEA'B'交CB'边于点E,连接BE.
(1)如图1,当A'B'边经过点B时,α=______°;
(2)在三角板旋转的过程中,若∠CBD的度数是∠CBE度数的m倍,猜想m的值并证明你的结论;
(3)设BC=1,AD=x,△BDE的面积为S,以点E为圆心,EB为半径作⊙E,当S=
1
3
S△ABC
时,求AD的长,并判断此时直线A'C与⊙E的位置关系.

查看答案和解析>>

科目:初中数学 来源:不详 题型:单选题

如图⊙O的两条弦AB、CD相交于点E,AC与DB的延长线交于点P,下列结论中成立的是(  )
A.CE•CD=BE•BAB.CE•AE=BE•DE
C.PC•CA=PB•BDD.PC•PA=PB•PD

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,⊙O是△ABC的外接圆,AB为直径,∠BAC的平分线交⊙O与点D,过点D的切线分别交AB、AC的延长线与点E、F.
(1)求证:AF⊥EF.
(2)小强同学通过探究发现:AF+CF=AB,请你帮忙小强同学证明这一结论.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,割线ABC与⊙O相交于B、C两点,D为⊙O上一点,E为弧BC的中点,OE交BC于F,DE交AC于G,∠ADG=∠AGD,AB=2,AD=4,EG=2.
求证:∠A=60°.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在⊙O中,弦CD垂直直径AB,垂足为M,AB=4,CD=2
3
,点E在AB的延长线上,且tanE=
3
3
.求证:DE是⊙O的切线.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,在Rt△ABC中,∠ABC=90°,以AB上的点O为圆心,OB的长为半径的圆与AB交于点E,与AC切于点D
(1)求证:BC=CD;
(2)求证:∠ADE=∠ABD.

查看答案和解析>>

科目:初中数学 来源:不详 题型:填空题

已知∠ABC=60°,点O在∠ABC的平分线上,OB=5cm,以O为圆心,3cm为半径作圆,则⊙O与BC的位置关系是______.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知:如图,PA为⊙O的切线,A为切点,割线PBC过圆心O,PA=4,PB=2.
(1)求BC、AB的长;
(2)若∠BAC的平分线与BC和⊙O分别相交于点D、E.求AE的长.

查看答案和解析>>

同步练习册答案