精英家教网 > 初中数学 > 题目详情
在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x。
(1)求y关于x的函数关系式;
(2)当AB的长等于多少时,⊙O的面积最大,并求出⊙O的最大面积。
解:(1)作直径AE,连接CE,则∠ACE=90°,
∵AD⊥BC,
∴∠ACE=∠ADB,
又∠B=∠E,
∴△ABD∽△AEC,


(2)当时,y最大为6,
∴⊙O的最大面积为36π。
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网在⊙O的内接△ABC中,AB+AC=12,AD⊥BC,垂足为D,且AD=3,设⊙O的半径为y,AB的长为x.
(1)求y关于x的函数关系式;
(2)当AB的长等于多少时,⊙O的面积最大,并求出⊙O的最大面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O的内接△ABC中,AB=AC,D是⊙O上一点,AD的延长线交BC的延长线于点P.
(1)求证:AB2=AD•AP;
(2)若⊙O的直径为25,AB=20,AD=15,求PC和DC的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O的内接△ABC中,∠ABC=30°,AC的延长线与过点B的⊙O的切线相交于点D,若⊙O的半径OC=1,BD∥OC,则CD的长为(  )
A、1+
3
3
B、
2
3
3
C、
3
3
D、
2

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在⊙O的内接△ABC中,AB+AC=12,AD⊥BC于D,且AD=3,当AB=6时,⊙O的面积最大,最大面积是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

在⊙O的内接△ABC中,AD⊥BC于D,
(1)①图1中,若作直径AP,求证:AB•AC=AD•AP;
②已知AB+AC=12,AD=3,设⊙O的半径为y,AB的长为x.求y与x的函数关系式,及自变量x的取值范围;
(2)图2中,点E为⊙O上一点,且
AE
=
AB
,求证:CE+CD=BD.

查看答案和解析>>

同步练习册答案