精英家教网 > 初中数学 > 题目详情
(2013•莘县二模)如图,ABCD、CEFG是正方形,E在CD上且BE平分∠DBC,O是BD中点,直线BE、DG交于H.BD,AH交于M,连接OH,下列四个结论:
①BE⊥GD;②OH=
1
2
BG;③∠AHD=45°;④GD=
2
AM

其中正确的结论个数有(  )
分析:①由已知条件可证得△BEC≌△DGC,∠EBC=∠CDG,因为∠BDC+∠DBH+∠EBC=90°,所以∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;
②由①可以证明△BHD≌△BHG,就可以得到DH=GH,得出OH是△BGD的中位线,从而得出结论.
③若以BD为直径作圆,那么此圆必经过A、B、C、H、D五点,根据圆周角定理即可得到∠AHD=45°,所以②的结论也是正确的.
④此题要通过相似三角形来解;由②的五点共圆,可得∠BAH=∠BDH,而∠ABD=∠DBG=45°,由此可判定△ABM∽△DBG,根据相似三角形的比例线段即可得到AM、DG的比例关系;
解答:解:解:①正确,证明如下:
∵BC=DC,CE=CG,∠BCE=∠DCG=90°,
∴△BEC≌△DGC,∴∠EBC=∠CDG,
∵∠BDC+∠DBH+∠EBC=90°,
∴∠BDC+∠DBH+∠CDG=90°,即BE⊥GD,故①正确;
②∵BE平分∠DBC,
∴∠DBH=∠GBH.
∵BE⊥GD,
∴∠BHD=∠BHG=90°.
在△BHD和△BHG中
∠DBH=∠GBH
BH=BH
∠BHD=∠BHG

∴△BHD≌△BHG(ASA),
∴DH=GH.
∵O是BD中点,
∴DO=BO.
∴OH是△BDG的中位线,
∴OH=
1
2
BG,故②正确;
③由于∠BAD、∠BCD、∠BHD都是直角,因此A、B、C、D、H五点都在以BD为直径的圆上;
由圆周角定理知:∠DHA=∠ABD=45°,故③正确;
④由②知:A、B、C、D、H五点共圆,则∠BAH=∠BDH;
又∵∠ABD=∠DBG=45°,
∴△ABM∽△DBG,得AM:DG=AB:BD=1:
2
,即DG=
2
AM;
故④正确;
∴正确的个数有4个.
故选D.
点评:本题主要考查了相似三角形的判定与性质的运用,全等三角形的判定与性质的运用、正方形的性质的运用,角平分线的性质的运用以及圆周角定理等知识的综合应用,能够判断出A、B、C、D、H五点共圆是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莘县二模)如图,△ABC是等边三角形.P是∠ABC的平分线BD上一点,PE⊥AB于点E,线段BP的垂直平分线交BC于点F,垂足为点Q.若BF=2,则PE的长为
3
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莘县二模)小明从上面观察下图所示的两个物体,看到的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莘县二模)商场对某商品优惠促销,如果以八折的优惠价格每出售一件商品,就少赚15元,那么顾客买一件这种商品就只需付(  )元.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莘县二模)为了呼吁同学们共同关注地球暖化问题对人类生活的影响,小明调查了2011年6月气温情况,如图所示.根据统计图分析,这组数据的众数和中位数分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•莘县二模)如图,梯形ABCD中,AD∥BC,CE是∠BCD的平分线,且CE⊥AB,E为垂足,BE=2AE.若四边形AECD面积为1,则梯形ABCD的面积为
15
7
15
7

查看答案和解析>>

同步练习册答案