【题目】已知抛物线与y轴交于点C,与x轴的两个交点分别为A(﹣4,0),B(1,0).
(1)求抛物线的解析式;
(2)已知点P在抛物线上,连接PC,PB,若△PBC是以BC为直角边的直角三角形,求点P的坐标;
(3)已知点E在x轴上,点F在抛物线上,是否存在以A,C,E,F为顶点的四边形是平行四边形?若存在,请直接写出点E的坐标;若不存在,请说明理由.
【答案】(1);(2)满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);
(3)E为(﹣7,0)或(﹣1,0)或(,﹣2)或(,﹣2).
【解析】
试题分析:(1)因为抛物线经过点A(﹣4,0),B(1,0),所以可以设抛物线为y=﹣(x+4)(x﹣1),展开即可解决问题.
(2)先证明∠ACB=90°,点A就是所求的点P,求出直线AC解析式,再求出过点B平行AC的直线的解析式,利用方程组即可解决问题.
(3)分AC为平行四边形的边,AC为平行四边形的对角线两种切线讨论即可解决问题.
试题解析:(1)抛物线的解析式为y=﹣(x+4)(x﹣1),即;
(2)存在.
当x=0,y═=2,则C(0,2),
∴OC=2,
∵A(﹣4,0),B(1,0),
∴OA=4,OB=1,AB=5,
当∠PCB=90°时,
∵AC2=42+22=20,BC2=22+12=5,AB2=52=25
∴AC2+BC2=AB2
∴△ACB是直角三角形,∠ACB=90°,
∴当点P与点A重合时,△PBC是以BC为直角边的直角三角形,此时P点坐标为(﹣4,0);
当∠PBC=90°时,PB∥AC,如图1,
设直线AC的解析式为y=mx+n,
把A(﹣4,0),C(0,2)代入得,解得,
∴直线AC的解析式为y=x+2,
∵BP∥AC,
∴直线BP的解析式为y=x+p,
把B(1,0)代入得+p=0,解得p=﹣,
∴直线BP的解析式为y=x﹣,
解方程组得或,此时P点坐标为(﹣5,﹣3);
综上所述,满足条件的P点坐标为(﹣4,0),P2(﹣5,﹣3);
(3)存在点E,设点E坐标为(m,0),F(n,)
①当AC为边,CF1∥AE1,易知CF1=3,此时E1坐标(﹣7,0),
②当AC为边时,AC∥EF,易知点F纵坐标为﹣2,
∴=﹣2,解得n=,得到F2(,﹣2),F3(,﹣2),
因此m=或,
此时E2(,0),E3(,0),
③当AC为对角线时,AE4=CF1=3,此时E4(﹣1,0),
综上所述满足条件的点E为(﹣7,0)或(﹣1,0)或(,﹣2)或(,﹣2).
科目:初中数学 来源: 题型:
【题目】某校九年级(1)班全体学生体能测试成绩统计如下表(总分30分):
成绩(分) | 24 | 25 | 26 | 27 | 28 | 29 | 30 |
人数(人) | 2 | 5 | 6 | 6 | 8 | 7 | 6 |
根据上表中的信息判断,下列结论中错误的是( )
A. 该班一共有40名同学 B. 成绩的众数是28分
C. 成绩的中位数是27分 D. 成绩的平均数是27.45分
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com