精英家教网 > 初中数学 > 题目详情

【题目】在直角坐标系中,过原点O及点A(8,0),C(0,6)作矩形OABC,连结OB,D为OB的中点。点E是线段AB上的动点,连结DE,作DF⊥DE,交OA于点F,连结EF。已知点E从A点出发,以每秒1个单位长度的速度在线段AB上移动,设移动时间为t秒。

(1)如图1,当t=3时,求DF的长;
(2)如图2,当点E在线段AB上移动的过程中,∠DEF的大小是否发生变化?如果变化,请说明理由;如果不变,请求出tan∠DEF的值;
(3)连结AD,当AD将△DEF分成的两部分面积之比为1:2时,求相应t的值。

【答案】
(1)

解:当t=3时,如图1,点E为AB中点.

∵点D为OB中点,

∴DE//OA,DE=OA=4,

∵OA⊥AB,

∴DE⊥AB,

∴∠OAB=∠DEA=90°,

又∵DF⊥DE,

∴∠EDF=90°

∴四边形DFAE是矩形,

∴DF=AE=3.


(2)

解: ∵∠DEF大小不变,如图2,

过D作DM⊥OA,DN⊥AB,垂足分别是M、N,

∵四边形OABC是矩形,

∴OA⊥AB,

∴四边形DMAN是矩形,

∴∠MDN=90°,DM//AB,DN//OA,

,,

∵点D为OB中点,

∴M、N分别是OA、AB中点,

∴DM=AB=3,DN=OA=4,

∵∠EDF=90°,

∴∠FDM=∠EDN.

又∵∠DMF=∠DNE=90°,

∴△DMF∽△DNE

,

∵∠EDF=90°,

∴tan∠DEF=


(3)

解:过D作DM⊥OA,DN⊥AB。垂足分别是M,N.

若AD将△DEF的面积分成1:2的两个部分,设AD交EF于点G,则易得点G为EF的三等分点.

①当点E到达中点之前时.

NE=3-t,由△DMF∽△DNE得

MF=(3-t).

∴AF=4+MF=-t+.

∵点为EF的三等分点。

.t).

由点A(8,0),D(4,3)得直线AD解析式为y=-χ+6.

(.t)代入,得t=.

②当点E越过中点之后.

NE=t-3,由△DMF~△DNE得MF=(t-3).

∴AF=4-MF=-+.

∵点为EF的三等分点.

(.).

代入直线AD解析式y=-χ+6.

得t=.


【解析】(1)当t=3时,如图1,点E、D分别为AB、OB中点,得出DE//OA,DE=OA=4,根据OA⊥AB得出DE⊥AB,从而得出四边形DFAE是矩形,根据矩形性质求出DF=AE=3.
(2)如图2,过D作DM⊥OA,DN⊥AB,垂足分别是M、N,四边形OABC、DMAN都是矩形,由平行得出,,由D、M、N是中点又可以得出条件判断△DMF∽△DNE,从而得出tan∠DEF=
(3)过D作DM⊥OA,DN⊥AB。垂足分别是M,N;若AD将△DEF的面积分成1:2的两个部分,设AD交EF于点G,则易得点G为EF的三等分点.
分点E到达中点之前或越过中点之后来讨论,得出 NE,由△DMF∽△DNE得 MF和AF的长度, 再算出直线AD的解析式,由点G为EF的三等分点得出G点坐标将其代入AD直线方程求出t值。
【考点精析】本题主要考查了相似三角形的判定与性质和锐角三角函数的定义的相关知识点,需要掌握相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;锐角A的正弦、余弦、正切、余切都叫做∠A的锐角三角函数才能正确解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图①,在平面直角坐标系中,点A,B的坐标分别为(-1,0),(3,0),现同时将点A,B分别向上平移2个单位长度,再向右平移1个单位长度,分别得到点A,B的对应点C,D,连接AC,BD,CD.

(1)求点C,D的坐标及S四边形ABDC.

(2)y轴上是否存在一点Q,连接QA,QB,使SQAB=S四边形ABDC?若存在这样一点,求出点Q的坐标;若不存在,试说明理由.

(3)如图②,点P是线段BD上的一个动点,连接PC,PO,当点PBD上移动时(不与B,D重合),给出下列结论:①的值不变,②的值不变,其中有且只有一个是正确的,请你找出这个结论并求其值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,点E是AD上的一个动点,连接BE,作点A关于BE的对称点F,且点F落在矩形ABCD的内部,连结AF,BF,EF,过点F作GF⊥AF交AD于点G,设 =n.

(1)求证:AE=GE;
(2)当点F落在AC上时,用含n的代数式表示 的值;
(3)若AD=4AB,且以点F,C,G为顶点的三角形是直角三角形,求n的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】定义:有一组邻边相等,并且它们的夹角是直角的凸四边形叫做等腰直角四边形.

(1)如图1,等腰直角四边形ABCD,AB=BC,∠ABC=90°,
①若AB=CD=1,AB//CD,求对角线BD的长.
②若AC⊥BD,求证:AD=CD.
(2)如图2,在矩形ABCD中,AB=5,BC=9,点P是对角线BD上一点,且BP=2PD,过点P作直线分别交边AD,BC于点E,F,使四边形ABFE是等腰直角四边形.求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】科学实验证明,平面镜反射光线的规律是:射到平面镜上的光线和反射出的光线与平面镜所夹的角相等.

(1)如图,一束光线m射到平面镜a上,被a反射到平面镜b上,又被b镜反射出去,若b镜反射出的光线n平行于m,且∠1=30,则∠2= ,∠3=

(2)在(1)中,若∠1=70,则∠3= ;若∠1=a,则∠3=

(3)由(1)(2)请你猜想:当∠3= 时,任何射到平面镜a上的光线m经过平面镜a和b的两次反射后,入射光线m与反射光线n总是平行的?请说明理由.

(提示:三角形的内角和等于180

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,有一个不定的正方形ABCD,它的两个相对的顶点A,C分别在边长为1的正六边形一组对边上,另外两个顶点B,D在正六边形内部(包括边界),则正方形边长a的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】交通工程学理论把在单向道路上行驶的汽车看成连续的液体,并用流量、速度、密度三个概念描述车流的基本特征。其中流量q(辆/小时)指单位时间内通过道路指定断面的车辆数;速度v(千米/小时)指通过道路指定断面的车辆速度;密度(辆/千米)指通过道路指定断面单位长度内的车辆数,为配合大数据治堵行动,测得某路段流量q与速度v之间的部分数据如下表:

速度v(千米/小时)

5

10

20

32

40

48

流量q(辆/小时)

550

1000

1600

1792

1600

1152


(1)根据上表信息,下列三个函数关系式中,刻画q,v关系最准确的是(只需填上正确答案的序号)①
(2)请利用(1)中选取的函数关系式分析,当该路段的车流速为多少时,流量达到最大?最大流量是多少?
(3)已知q,v,k满足 ,请结合(1)中选取的函数关系式继续解决下列问题:
①市交通运行监控平台显示,当 时道路出现轻度拥堵,试分析当车流密度k在什么范围时,该路段出现轻度拥堵;
②在理想状态下,假设前后两车车头之间的距离d(米)均相等,求流量q最大时d的值

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知A、B两点的坐标分别为(2,0)、(0,4),P是△AOB外接圆⊙C上的一点,且∠AOP=45°,则点P的坐标为

查看答案和解析>>

同步练习册答案