精英家教网 > 初中数学 > 题目详情
(本题10分)已知一个正比例函数和一个一次函数的图象交于点P(-2,2),且一次函数的图象与y轴相交于点Q(0,4)
【小题1】(1)求这两个函数的解析式
【小题2】(2)在同一坐标系内,分别画出这两个函数的图象
【小题3】(3)求出的面积

【小题1】y=-x,
【小题2】y=x+4
【小题3】S=4解析:
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(本题10分)已知△ABC的一条边BC的长为5,另两边ABAC的长是关于x的一元二次方程的两个实数根.

(1)求证:无论为何值时,方程总有两个不相等的实数根;

(2)当为何值时,△ABC是以BC为斜边的直角三角形;

 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题10分)
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;

(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)
M1的坐标是     ▲     
(2) 请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦  ▲ ,   若点P的坐标为(m,0)时,则b﹦  ▲  ;
(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2011-2012学年江苏省海安县曲塘中学附属初级中学九年级上学期期中考试数学卷 题型:解答题

(本题10分)已知△ABC的一条边BC的长为5,另两边ABAC的长是关于x的一元二次方程的两个实数根.
(1)求证:无论为何值时,方程总有两个不相等的实数根;
(2)当为何值时,△ABC是以BC为斜边的直角三角形;

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(山东莱芜) 题型:解答题

(本题10分)
已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.
(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;

(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)
M1的坐标是     ▲     
(2) 请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦  ▲ ,   若点P的坐标为(m,0)时,则b﹦  ▲  ;
(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

查看答案和解析>>

科目:初中数学 来源:2010年高级中等学校招生全国统一考试数学卷(山东莱芜) 题型:解答题

(本题10分)

已知点P的坐标为(m,0),在x轴上存在点Q(不与P点重合),以PQ为边作正方形PQMN,使点M落在反比例函数y = 的图像上.小明对上述问题进行了探究,发现不论m取何值,符合上述条件的正方形只有两个,且一个正方形的顶点M在第四象限,另一个正方形的顶点M1在第二象限.

(1)如图所示,若反比例函数解析式为y= ,P点坐标为(1, 0),图中已画出一符合条件的一个正方形PQMN,请你在图中画出符合条件的另一个正方形PQ1M1N1,并写出点M1的坐标;

(温馨提示:作图时,别忘了用黑色字迹的钢笔或签字笔描黑喔!)

M1的坐标是     ▲     

(2) 请你通过改变P点坐标,对直线M1 M的解析式y﹦kx+b进行探究可得 k﹦  ▲  ,    若点P的坐标为(m,0)时,则b﹦  ▲   ;

(3) 依据(2)的规律,如果点P的坐标为(6,0),请你求出点M1和点M的坐标.

 

查看答案和解析>>

同步练习册答案