精英家教网 > 初中数学 > 题目详情
(2000•福建)已知:如图,AB为⊙O的直径,AO为⊙O'的直径,⊙O的弦AC交⊙O'于D点,OC和BD相交于E点,AB=4,∠CAB=30°.求CE、DE的长.

【答案】分析:连接OD、BC,根据圆周角定理知OD、BC都与AC垂直,因此OD∥BC,而AO=OB,即OD是△ABC的中位线,因此OD:BC=1:2,易证得△OED∽△CEB,根据OD、BC的比例关系知:两个三角形的相似比为1:2,可得EC=2OE、BE=2DE,欲求CE、DE,必须先求出OC、BD的长;已知了⊙O的直径AB的长,即可得到半径OC的长,根据CE、OC的比例关系即可求出CE的值;在Rt△OAD和Rt△ABC中,通过解直角三角形,可求出AD、BC的长,由于OD⊥AC,根据垂径定理可得到CD的长,那么在Rt△BCD中,通过勾股定理即可求得BD的值,根据DE、BD的比例关系,可得到DE的长,由此得解.
解答:解法一:连接OD、BC,(1分)
∵AO、AB分别是⊙O'和⊙O的直径,
∴∠ADO=∠ACB=90°,且AD=DC,(2分)
∴OD∥BC,BC=2OD,(3分)
∴△OED∽△CEB,
,(5分)
,CE=OC=AB=,(6分)
在Rt△AOD和Rt△ABC中,∠OAD=30°,AB=4,
∴BC=2OD=AB=2,
AC=AB•cos30°=2,(8分)
∴AD=CD=
又在Rt△BDC中,BD=
∴DE=BD=.(9分)

解法二:同解法一证得AD=DC,(2分)
可再连接O'D,则O'D∥OC,(3分)
,(4分)
∴DE=BD,OE=O′D=,(6分)
以下同解法一.
点评:此题主要考查了圆周角定理、三角形中位线定理、解直角三角形以及相似三角形的性质等知识,能够得到DE、BE以及CE、OE的比例关系是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源:2000年全国中考数学试题汇编《二次函数》(03)(解析版) 题型:解答题

(2000•福建)已知抛物线y=x2+px+q与x轴相交于不同的两点A(x1,0)、B(x2,0)(B在A的右边),又抛物线与y轴相交于C点,且满足
(1)求证:4p+5q=0;
(2)问是否存在一个圆O',使它经过A、B两点,且与y轴相切于C点?若存在,试确定此时抛物线的解析式及圆心O'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年全国中考数学试题汇编《反比例函数》(01)(解析版) 题型:解答题

(2000•福建)已知反比例函数y=与一次函数y=kx+b的图象都经过点(-2,-1),且在x=3时这两个函数值相等,求这两个函数的解析式.

查看答案和解析>>

科目:初中数学 来源:2000年福建省三市一区中考数学试卷(解析版) 题型:解答题

(2000•福建)已知抛物线y=x2+px+q与x轴相交于不同的两点A(x1,0)、B(x2,0)(B在A的右边),又抛物线与y轴相交于C点,且满足
(1)求证:4p+5q=0;
(2)问是否存在一个圆O',使它经过A、B两点,且与y轴相切于C点?若存在,试确定此时抛物线的解析式及圆心O'的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:2000年福建省三市一区中考数学试卷(解析版) 题型:解答题

(2000•福建)已知反比例函数y=与一次函数y=kx+b的图象都经过点(-2,-1),且在x=3时这两个函数值相等,求这两个函数的解析式.

查看答案和解析>>

同步练习册答案