分析 (1)(2)根据已知等式解答即可;
(3)根据已知等式可得第n个等式为$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$;
(4)根据规律计算即可.
解答 解:(1)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}=\frac{3}{4}$;
(2)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{9×10}$
=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{9}-\frac{1}{10}$
=$\frac{9}{10}$;
(3)$\frac{1}{n(n+1)}=\frac{1}{n}-\frac{1}{n+1}$;
(4)$\frac{1}{1×2}$+$\frac{1}{2×3}$+$\frac{1}{3×4}$+…+$\frac{1}{2006×2007}$=$1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+…+\frac{1}{2006}-\frac{1}{2007}=\frac{2006}{2007}$;
故答案为:$\frac{3}{4};\frac{1}{n}-\frac{1}{n+1};\frac{2006}{2007}$
点评 本题主要考查分式的混合运算,熟练掌握分式的混合运算法则是解题的关键.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
A. | ①② | B. | ①②④ | C. | ①②③ | D. | ①②③④ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com