精英家教网 > 初中数学 > 题目详情

请写出“三个角都相等的三角形是等边三角形”的逆命题:________.

等边三角形的三个角都相等
分析:把原命题“三个角都相等的三角形是等边三角形”的题设与结论进行交换即可.
解答:“三个角都相等的三角形是等边三角形”的逆命题为“等边三角形的三个角都相等”.
故答案为等边三角形的三个角都相等.
点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.也考查了逆命题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某城市街道示意图,已知△ABC与△ECD均是等边三角形(即三条边都相等,三个角都相等的三角形),点A,B,C,D,E,F,G,H为中巴停靠站.精英家教网
(1)图中△ADC与△BEC全等吗?说明理由.
(2)△BEC可由△ADC通过怎样的变换得到?请描述这个变换.根据这个变换,你认为∠AHB等于多少度(不必写出理由)
(3)中巴车甲从A站出发,按照A→H→G→D→E→C
→F的顺序达到F站;中巴乙从B站出发,沿B→F→H→E→D→C→F的顺序到达F站.若甲,乙分别从A,B站同时出发,在各站耽误的时间相同,两车的平均速度也相同,试问哪一辆中巴先到达指定站?为什么?

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线AB∥CD,直线EF与AB、CD分别相交于点E、F.
(1)如图1,若∠1=60°,求∠2、∠3的度数;
(2)若点P是平面内的一个动点,连结PE、PF,探索∠EPF、∠PEB、∠PFD三个角之间的关系:
①当点P在图2的位置时,可得∠EPF=∠PEB+∠PFD;
请阅读下面的解答过程,并填空(理由或数学式).
解:如图2,过点P作MN∥AB,
则∠EPM=∠PEB
(两直线平行,内错角相等)
(两直线平行,内错角相等)

∵AB∥CD(已知),MN∥AB(作图),
∴MN∥CD
(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)
(如果两条直线都和第三条直线平行,那么这两条直线也互相平行)

∴∠MPF=∠PFD
(两直线平行,内错角相等)
(两直线平行,内错角相等)

∠EPM+∠FPM
∠EPM+∠FPM
=∠PEB+∠PFD(等式的性质)
即∠EPF=∠PEB+∠PFD.
②当点P在图3的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系:
∠EPF+∠PEB+∠PFD=360°
∠EPF+∠PEB+∠PFD=360°

③当点P在图4的位置时,请直接写出∠EPF、∠PEB、∠PFD三个角之间的关系:
∠EPF+∠PFD=∠PEB
∠EPF+∠PFD=∠PEB

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图是某城市街道示意图,已知△ABC与△ECD均是等边三角形(即三条边都相等,三个角都相等的三角形),点A,B,C,D,E,F,G,H为中巴停靠站.
(1)图中△ADC与△BEC全等吗?说明理由.
(2)△BEC可由△ADC通过怎样的变换得到?请描述这个变换.根据这个变换,你认为∠AHB等于多少度(不必写出理由)
(3)中巴车甲从A站出发,按照A→H→G→D→E→C
→F的顺序达到F站;中巴乙从B站出发,沿B→F→H→E→D→C→F的顺序到达F站.若甲,乙分别从A,B站同时出发,在各站耽误的时间相同,两车的平均速度也相同,试问哪一辆中巴先到达指定站?为什么?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是某城市街道示意图,已知△ABC与△ECD均是等边三角形(即三条边都相等,三个角都相等的三角形),点A,B,C,D,E,F,G,H为中巴停靠站.
精英家教网

(1)图中△ADC与△BEC全等吗?说明理由.
(2)△BEC可由△ADC通过怎样的变换得到?请描述这个变换.根据这个变换,你认为∠AHB等于多少度(不必写出理由)
(3)中巴车甲从A站出发,按照A→H→G→D→E→C
→F的顺序达到F站;中巴乙从B站出发,沿B→F→H→E→D→C→F的顺序到达F站.若甲,乙分别从A,B站同时出发,在各站耽误的时间相同,两车的平均速度也相同,试问哪一辆中巴先到达指定站?为什么?

查看答案和解析>>

同步练习册答案