【题目】设、是两个任意独立的一位正整数,则点在抛物线的上方的概率是( )
A. B. C. D.
【答案】D
【解析】
根据a、b是两个任意独立的一位正整数,得出a,b取1~9,然后求出点(a,b)在抛物线y=ax2﹣bx的上方的所有情况,再根据概率公式,即可求出答案.
∵a、b是两个任意独立的一位正整数,∴a,b取1~9,∴代入x=a时,y=a3﹣ba.
∵点(a,b)在抛物线y=ax2﹣bx的上方,∴b﹣y=b﹣a3+ba>0,当a=1时,b﹣1+b>0,∴b,有9个数,b=1,2,3,4,5,6,7,8,9,当a=2时,b﹣8+2b>0,∴b>,有7个数,b=3,4,5,6,7,8,9,当a=3时,b﹣27+3b>0,∴b>,有3个数,b=7,8,9,当a=4时,b﹣64+4b>0,∴b>,有0个数,b在此以上无解,∴共有19个,而总的可能性为9×9=81,∴点(a,b)在抛物线y=ax2﹣bx的上方的概率是.
故选D.
科目:初中数学 来源: 题型:
【题目】如图1,在矩形ABCD中,动点E从A出发,沿AB→BC方向运动,当点E到达点C时停止运动,过点E做FE⊥AE,交CD于F点,设点E运动路程为x,FC=y,如图2所表示的是y与x的函数关系的大致图象,当点E在BC上运动时,FC的最大长度是,则矩形ABCD的面积是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点D,E分别在AC,AB上,BD与CE相交于点O,已知∠B=∠C,现添加下面的哪一个条件后,仍不能判定△ABD≌△ACE的是( )
A.AD=AEB.AB=ACC.BD=CED.∠ADB=∠AEC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,,,边长为的正方形的一个顶点在边上,与另两边分
别交于点、,,将正方形平移,使点保持在上(不与重合),设,正方形与重叠部分的面积为.
求与的函数关系式并写出自变量的取值范围;
为何值时的值最大?
在哪个范围取值时的值随的增大而减小?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们知道:x2﹣6x=(x2﹣6x+9)﹣9=(x﹣3)2﹣9;﹣x2+10=﹣(x2﹣10x+25)+25=﹣(x﹣5)2+25,这一种方法称为配方法,利用配方法请解以下各题:
(1)按上面材料提示的方法填空:a2﹣4a= = .﹣a2+12a= = .
(2)探究:当a取不同的实数时在得到的代数式a2﹣4a的值中是否存在最小值?请说明理由.
(3)应用:如图.已知线段AB=6,M是AB上的一个动点,设AM=x,以AM为一边作正方形AMND,再以MB、MN为一组邻边作长方形MBCN.问:当点M在AB上运动时,长方形MBCN的面积是否存在最大值?若存在,请求出这个最大值;否则请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=AC,点D在边BC上,点E在边AC上,且AD=AE.
(1)如图1,当AD是边BC上的高,且∠BAD=30°时,求∠EDC的度数;
(2)如图2,当AD不是边BC上的高时,请判断∠BAD与∠EDC之间的关系,并加以证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校为了解学生的安全意识情况,在全校范围内随机抽取部分学生进行问卷调查,根据调查结果,把学生的安全意识分成“淡薄”、“一般”、“较强”、“很强”四个层次,并绘制成如图9的两幅尚不完整的统计图.
根据以上信息,解答下列问题:
(1)这次调查一共抽取了 名学生;
(2)请将条形统计图补充完整;
(3)分别求出安全意识为“淡薄”的学生占被调查学生总数的百分比、安全意识为“很强”的学生所在扇形的圆心角的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ABC和∠ACB的平分线相交于点G,过点G作EF∥BC交AB于E,交AC于F,过点G作GD⊥AC于D,下列四个结论:
①EF=BE+CF;②∠BGC=90°+∠A;③点G到△ABC各边的距离相等;④设GD=m,AE+AF=n,则S△AEF=mn.其中正确的结论有( )
A.①②④B.①③④C.①②③D.①②③④
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com