【题目】如图1,△ABC中,AD是∠BAC的角平分线,若AB=AC+CD.那么∠ACB 与∠ABC有怎样的数量关系? 小明通过观察分析,形成了如下解题思路:
如图2,延长AC到E,使CE=CD,连接DE,由AB=AC+CD,可得AE=AB,又因为AD是∠BAC的平分线,可得△ABD≌△AED,进一步分析就可以得到∠ACB 与∠ABC的数量关系.
(1) 判定△ABD 与△AED 全等的依据是______________(SSS,SAS,ASA,AAS 从其中选择一个);
(2)∠ACB 与∠ABC的数量关系为:___________________
【答案】 SAS ∠ACB =2∠ABC
【解析】试题分析:(1)根据已知以及作法可知可以利用SAS判定△ABD 与△AED 全等;
(2)根据△ABD ≌△AED,可得∠B=∠E,由作法可知CE=CD,从而得∠E=∠CDE,再利用三角形外角的性质即可得∠ACB=2∠ABC.
试题解析:(1)延长AC到E,使CE=CD,连接DE,
∵AB=AC+CD,AE=AC+CE,∴AE=AB,
又∵AD是∠BAC的平分线,∴∠BAD=∠CAD,
又AD是公共边,∴△ABD≌△AED(SAS),
故答案为:SAS;
(2)∵△ABD≌△AED,∴∠B=∠E,
∵CD=CE,∴∠E=∠CDE,
∵∠ACB=∠E+∠CDE,
∴∠ACB=2∠B,
故答案为:∠ACB=2∠B.
科目:初中数学 来源: 题型:
【题目】用一个平面去截一个几何体,截面形状为三角形,则这个几何体可能为:①正方体;②圆柱;③圆锥;④正三棱柱这四个几何体中的:_________(填序号).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】运用“同一图形的面积不同表示方式相同”可以证明一类含有线段的等式,这种解决问题的方法我们称之为面积法.
(1)如图1,在等腰三角形ABC中,AB=AC,AC边上的高为h,M是底边BC上的任意一点,点M到腰AB、AC的距离分别为h1、h2.请用面积法证明:h1+h2=h;
(2)当点M在BC延长线上时,h1、h2、h之间的等量关系式是 ;(直接写出结论不必证明)
(3)如图2在平面直角坐标系中有两条直线l1:y=x+3、l2:y=﹣3x+3,若l2上的一点M到l1的距离是1,请运用(1)、(2)的结论求出点M的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com