精英家教网 > 初中数学 > 题目详情

如图,在Rt△ABC中,∠ABC=90°,AB=4,BC=3,将△ABC沿AC边所在直线向右平移x个单位,记平移后的对应三角形为△DEF,连接BE.
(1)当x=4时,求四边形ABED的周长;
(2)当x为何值时,△BED是等腰三角形?

解:(1)将△ABC沿AC边所在直线向右平移x个单位,当x=4时,
即AD=4,又因为平移后的对应三角形为△DEF,
所以,AB=AD=DE=BE=4,
所以四边形ABED的周长为16.

(2)当BE=ED=4时,x=4;
当BE=BD=x时,由∠CDE=∠BDE,BC⊥DE,
利用轴对称的性质可得DC=BD=BE,即5-x=x,
x=2.5,
当BD=ED=4时,
过点D作DH⊥BE于H,
BH=,DH==
利用勾股定理得:DH2+BH2=BD2

x=
答:(1)当x=4时,求四边形ABED的周长为16;(2)当x为或2.5或4时,△BED是等腰三角形.
分析:(1)根据轴对称的性质,求得AD,DE的长,然后即可求四边形ABED的周长
(2)分两种情况:一是,当BE=ED=4时,利用轴对称的性质可得x的值,二是当BD=ED=4时,利用勾股定理可求得x的值.
点评:此题主要考查勾股定理,轴对称的性质,等腰三角形的性质,平移的性质等多个知识点,此题涉及到的知识点较多,综合性较强,属于中档题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•莆田质检)如图,在Rt△ABC中,∠C=90°,∠BAC的平分线AD交BC于点D,点E是AB上一点,以AE为直径的⊙O过点D,且交AC于点F.
(1)求证:BC是⊙O的切线;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分别是∠BAC和∠ABC的平分线,它们相交于点D,求点D到BC的距离.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,将三角板中一个30°角的顶点D放在AB边上移动,使这个30°角的两边分别与△ABC的边AC、BC相交于点E、F,且使DE始终与AB垂直.
(1)画出符合条件的图形.连接EF后,写出与△ABC一定相似的三角形;
(2)设AD=x,CF=y.求y与x之间函数解析式,并写出函数的定义域;
(3)如果△CEF与△DEF相似,求AD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,BD⊥AC,sinA=
3
5
,则cos∠CBD的值是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分别为边AB、BC的中点,连接DE,点P从点A出发,沿折线AD-DE-EB运动,到点B停止.点P在AD上以
5
cm/s的速度运动,在折线DE-EB上以1cm/s的速度运动.当点P与点A不重合时,过点P作PQ⊥AC于点Q,以PQ为边作正方形PQMN,使点M落在线段AC上.设点P的运动时间为t(s).
(1)当点P在线段DE上运动时,线段DP的长为
(t-2)
(t-2)
cm,(用含t的代数式表示).
(2)当点N落在AB边上时,求t的值.
(3)当正方形PQMN与△ABC重叠部分图形为五边形时,设五边形的面积为S(cm2),求S与t的函数关系式.

查看答案和解析>>

同步练习册答案