精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,∠B=90°,O是AB上一点,以O为圆心,OB为半径的圆与AB交于E,与AC切于点D,直线ED交BC的延长线于F.
(1)求证:BC=FC;
(2)若AD:AE=2:1,求cot∠F的值.

(1)证明:连接BD.
∵BE是直径,
∴∠BDE=90°,
∴∠EBD=90°-∠BED.
∵∠EBF=90°
∴∠F=90°-∠BEF.
∴∠F=∠EBD.
∵⊙O切AC于D,
∴∠EBD=∠ADE=∠CDF.
∴∠F=∠CDF.
∴CD=CF,
∵OB⊥BC,
∴BC是⊙O的切线,
由切线长定理可知:CD=CB.
∴BC=FC.

(2)解:在△ADE和△ABD中,
∵∠A=∠A,∠ADE=∠ABD,
∴△ADE∽△ABD.

∵AD:AE=2:1.
∴BD:DE=2:1,
又∵∠F=∠EBD.
∴cot∠F=cot∠EBD==2.
分析:(1)首先连接BD,由等角的余角相等,易证得∠F=∠EBD.由弦切角定理,易证得∠F=∠CDF.可得CD=CF,又由切线长定理,可得CD=CB,继而可证得BC=FC;
(2)易证得△ADE∽△ABD,然后由相似三角形的对应边成比例,可求得BD:DE=2:1,又由∠F=∠EBD.可求得cot∠F=cot∠EBD==2.
点评:此题考查了切线的性质、相似三角形的判定与性质、弦切角定理、切线长定理以及等腰三角形的判定与性质.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案