精英家教网 > 初中数学 > 题目详情

【题目】已知点P到圆的最大距离为11,最小距离为7,则此圆的半径为多少?

【答案】解:如图,分两种情况:
①当点P在圆内时,最近点的距离为7,最大距离为11,则直径是18,因而半径是9;
②当点P在圆外时,最近点的距离为7,最大距离为11,则直径是4,因而半径是2;
故答案:圆的半径为2或9.圆
【解析】点P应分为位于圆的内部或外部两种情况讨论.当点P在圆内时,点到圆的最大距离与最小距离的和是直径;当点P在圆外时,点到圆的最大距离与最小距离的差是直径,由此得解.
【考点精析】关于本题考查的点和圆的三种位置关系,需要了解圆和点的位置关系:以点P与圆O的为例(设P是一点,则PO是点到圆心的距离),P在⊙O外,PO>r;P在⊙O上,PO=r;P在⊙O内,PO<r才能得出正确答案.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在已知的△ABC中,按以下步骤作图: ①分别以B、C为圆心,以大于 BC的长为半径作弧,两弧相交于两点M、N;②作直线MN交AB于点D,连接CD,若CD=AC,∠A=50°,则∠B=(

A.50°
B.45°
C.30°
D.25°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,△ABC内接于⊙O,BD为⊙O的直径,BD与AC相交于点H,AC的延长线与过点B的直线相交于点E,且∠A=∠EBC.
(1)求证:BE是⊙O的切线;
(2)已知CG∥EB,且CG与BD、BA分别相交于点F、G,若BGBA=48,FG= ,DF=2BF,求AH的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD内接于⊙O,F是 上一点,且 = ,连接CF并延长交AD的延长线于点E,连接AC.若∠ABC=105°,∠BAC=25°,则∠E的度数为(  )

A.45°
B.50°
C.55°
D.60°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两名同学在一次用频率去估计概率的实验中,统计了某一结果出现的频率绘出的统计图如图,则符合这一结果的实验可能是(
A.掷一枚正六面体的骰子,出现1点的概率
B.抛一枚硬币,出现正面的概率
C.从一个装有2个白球和1个红球的袋子中任取一球,取到红球的概率
D.任意写一个整数,它能被2整除的概率

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】三张质地相同的卡片如图所示,将卡片洗匀后背面朝上放置在桌面上,甲、乙两人进行如下抽牌游戏:甲先抽一张卡片放回,乙再抽一张.
(1)求甲先抽一张卡片,抽到的卡片上数字为偶数的概率;
(2)用树形(状)图或列表的方法表示甲、乙两人游戏所有等可能的结果,并求他们抽到相同数字卡片的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AB=AC=10cm,BC=12cm,点P从点C出发,在线段CB上以每秒1cm的速度向点B匀速运动.与此同时,点M从点B出发,在线段BA上以每秒lcm的速度向点A匀速运动.过点P作PN⊥BC,交AC点N,连接MP,MN.当点P到达BC中点时,点P与M同时停止运动.设运动时间为t秒(t>0).

(1)当t为何值时,PM⊥AB.
(2)设△PMN的面积为y(cm2),求出y与x之间的函致关系式.
(3)是否存在某一时刻t,使SPMN:SABC=1:5?若存在,求出t的值;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】下列说法正确的有( ) ① ﹣2的值在3和4之间;
②当a=1时,关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根;
③命题“对顶角相等”的逆命题是真命题;
④十边形的内角和为1440°;
⑤等边三角形既是轴对称图形又是中心对称图形.
A.1个
B.2个
C.3个
D.4个

查看答案和解析>>

同步练习册答案