精英家教网 > 初中数学 > 题目详情
2.如图,是小明设计用手电来测量某古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,求该古城墙的高度.

分析 利用入射与反射得到∠APB=∠CPD,则可判断Rt△ABP∽Rt△CDP,于是根据相似三角形的性质得$\frac{1.2}{CD}$=$\frac{1.8}{12}$,然后利用比例性质求出CD即可.

解答 解:根据题意得∠APB=∠CPD,
∵AB⊥BD,CD⊥BD,
∴∠ABP=∠CDP=90°,
∴Rt△ABP∽Rt△CDP,
∴$\frac{AB}{CD}$=$\frac{BP}{DP}$,即$\frac{1.2}{CD}$=$\frac{1.8}{12}$,
解得CD=8.
答:该古城墙的高度为8米.

点评 本题考查了相似三角形的应用:利用入射与反射的原理构建相似三角形,然后利用相似三角形的性质即相似三角形的对应边的比相等解决.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

12.在?ABCD中,已知∠B=50°,则∠A=130°.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.解下列一元二次方程
(1)x2+3x-4=0       
(2)2x2-4x-1=0(配方法)
(3)5x+2=3x2
(4)4x(2x-1)=1-2x.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.$\frac{\sqrt{6}×\sqrt{3}}{\sqrt{2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

17.抛物线y=(x-1)2+1顶点坐标为(1,1).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.如图,在△ABC中,AB=8,AC=6,D是AC上的一点,且AD=2,试在AB上确定一点E,使得△ADE与原三角形相似,并求出AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.已知关于x的方程ax+2=2(a+x)的解是方程|x-$\frac{1}{2}$|-1=0的解,求a的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.3×$(\sqrt{4}-\sqrt{3})$×$\root{3}{\frac{8}{27}}$-|$\sqrt{3}-2$|

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

12.将点A(1,-2)先向左平移2个单位,再向上平移3个单位得到点A′,点A′的坐标为(  )
A.(-1,1)B.(-1,5)C.(3,1)D.(3,-5)

查看答案和解析>>

同步练习册答案