精英家教网 > 初中数学 > 题目详情
(2012•丹东)如图,在梯形ABCD中,AD∥BC,E是CD的中点,连接AE并延长交BC的延长线于点F,且AB⊥AE.若AB=5,AE=6,则梯形上下底之和为
13
13
分析:由在梯形ABCD中,AD∥BC,E是CD的中点,易证得△ADE≌△FCE,即可得EF=AE=6,CF=AD,又由AB⊥AE,AB=5,AE=6,由勾股定理即可求得BF的长,继而可求得梯形上下底之和.
解答:解:∵在梯形ABCD中,AD∥BC,
∴∠F=∠DAE,∠ECF=∠D,
∵E是CD的中点,
∴DE=CE,
在△ADE和△FCE中,
∠DAE=∠F
∠D=∠ECF
DE=CE

∴△ADE≌△FCE(AAS),
∴CF=AD,EF=AE=6,
∴AF=AE+EF=12,
∵AB⊥AE,
∴∠BAF=90°,
∵AB=5,
∴BF=
AB2+AF2
=13,
∴AD+BC=BC+CF=BF=13.
故答案为:13.
点评:此题考查了梯形的性质、全等三角形的判定与性质以及勾股定理.此题难度适中,注意掌握数形结合思想与转化思想的应用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•丹东)如图,在△ABC中,∠BAC=30°,以AB为直径的⊙O经过点C.过点C作⊙O的切线交AB的延长线于点P.点D为圆上一点,且
BC
=
CD
,弦AD的延长线交切线PC于点E,连接BC.
(1)判断OB和BP的数量关系,并说明理由;
(2)若⊙O的半径为2,求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丹东)如图是一个几何体的三视图,则这个几何体是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丹东)如图,菱形ABCD的周长为24cm,对角线AC、BD相交于O点,E是AD的中点,连接OE,则线段OE的长等于(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丹东)如图,点A是双曲线y=
k
x
在第二象限分支上的任意一点,点B、点C、点D分别是点A关于x轴、坐标原点、y轴的对称点.若四边形ABCD的面积是8,则k的值为(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•丹东)如图,边长为6的正方形ABCD内部有一点P,BP=4,∠PBC=60°,点Q为正方形边上一动点,且△PBQ是等腰三角形,则符合条件的Q点有
5
5
个.

查看答案和解析>>

同步练习册答案