精英家教网 > 初中数学 > 题目详情
6.如图是“明清影视城”的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0.25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是(  )
A.2米B.2.5米C.2.4米D.2.1米

分析 连接OF,交AC于点E,设圆O的半径为R米,根据勾股定理列出方程,解方程即可.

解答 解:连接OF,交AC于点E,
∵BD是⊙O的切线,
∴OF⊥BD,
∵四边形ABDC是矩形,
∴AC∥BD,
∴OE⊥AC,EF=AB,
设圆O的半径为R,在Rt△AOE中,AE=$\frac{AC}{2}$=$\frac{BD}{2}$=0.75米,
OE=R-AB=R-0.25,
∵AE2+OE2=OA2
∴0.752+(R-0.25)2=R2
解得R=1.25.
1.25×2=2.5(米).
答:这扇圆弧形门的最高点离地面的距离是2.5米.
故选:B.

点评 本题考查的是垂径定理的应用,掌握平分弦(不是直径)的直径垂直于弦是解题的关键,注意勾股定理的灵活运用.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

16.估计$\sqrt{32}$-$\sqrt{16}$÷2的运算结果在哪两个整数之间(  )
A.0和1B.1和2C.2和3D.3和4

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.已知关于x,y的方程组$\left\{\begin{array}{l}{3x+2y=p+1}\\{4x+3y=p-1}\end{array}\right.$的解满足x>y,则p的取值范围是(  )
A.p>-6B.p<-6C.-6<p<5D.p的值无法确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.问题情境:
数学活动课上,同学们探究等腰三角形中两条线段的关系:如图1,△ABC中,AB=AC,∠BAC=45°,点D是边AC上的一点,且DA=DB,点P是边AB上一点(不与点B重合),过点P作PE⊥BC,垂足为点E,交线段BD于点F.线段PF与BE之间存在怎样的数量关系?

特例猜想:
(1)为探究问题的一般结论,同学们先研究特殊情况:当点P与点A重合时,如图2,小彬猜想得到①△ADF≌△BDC;②PF=2BE.请你判断这两个猜想是否正确,并说明理由;
一般探究:
(2)通过特例启发,同学们广开思路,进行了如下探究.
请从下列A,B两题中任选一题作答:我选择A或B题:
A:如图3,勤学小组发现图1中PF=2BE也成立.他们的思路是:在图1中的BD上取一点N,使得PN=NB,延长PN交BC于点M,得到图3,证明了△PNF≌△BNM,….请你根据勤学小组的思路接着完成说明PF=2BE的过程.
B:善思小组探究了更加一般的情况,当图1中的点P运动到线段BA的延长线上,如图4,其余条件不变,发现此时PF=2BE也成立.他们的思路是:在BD的延长线上取一点N,使得PN=NB,延长PN交BC的延长线于点M,….请你根据善思小组的思路说明图4中的PF=2BE.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.甲、乙两位探险者今年到沙漠进行探险,没有了水,需要寻找水源,为了不致于走散,他们用两部对话机联系,已知对话机的有效距离为12千米,早晨8:00甲先出发,他以4千米/时的速度向东行走,1小时后乙出发,他以6千米/时的速度向北行进,上午10:00,甲、乙二人相距多远?还能保持联系吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.在四边形ABCD中,∠B+∠D=180°,对角线AC平分∠BAD.
(1)如图1,若∠DAB=120°,且∠B=90°,试探究边AD、AB与对角线AC的数量关系并说明理由.
(2)如图2,若将(1)中的条件“∠B=90°”去掉,(1)中的结论是否成立?请说明理由.
(3)如图3,若∠DAB=90°,探究边AD、AB与对角线AC的数量关系并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

18.下列图形中,由∠1=∠2能得到AB∥CD的是(  )
A.B.
C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.为了解在校学生参加课外兴趣小组活动情况,随机调查了40名学生,结果书法、绘画、舞蹈及其他的频数分别为8、11、12、9,则参加书法兴趣小组的频率是(  )
A.0.1B.0.15C.0.2D.0.3

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.已知23x-1=22×8,求x的值.

查看答案和解析>>

同步练习册答案