精英家教网 > 初中数学 > 题目详情
3.如图,在△ABC中,AD是BC边上的中线,E是AD的中点,过点A作BC的平行线与BE的延长线相交于点F,连接CF.
(1)求证:四边形CDAF为平行四边形;
(2)若∠BAC=90°,AC=AF,且AE=2,求线段BF的长.

分析 (1)用一组对边平行且相等来得出四边形CDAF为平行四边形;
(2)构造直角三角形,判断出△ACD是等边三角形,得出特殊角,最后用锐角三角函数,勾股定理计算即可.

解答 解:(1)∵E是AD的中点,
∴AE=ED,
∵AF∥BC,
∴∠AFE=∠DBE,∠FAE=∠BDE,
∴△AFE≌△DBE,
∴AF=BD,
∵AD是BC边中线,
∴CD=BD,
∴AF=CD,
∴四边形CDAF是平行四边形,
(2)如图

过F点作FG⊥AB交BA的延长线于点G.
∵∠CAB=90°,AD是BC边中线,
∴AD=CD
又∵AC=AF,AF=CD,
∴AC=AD=CD,
∴△ACD是等边三角形,
∴∠ACB=60°,
∴∠ABC=30°,
又∵AF∥BC,
∴∠ABC=∠FAG=30°
∵AE=2,
∴AD=AC=AF=4,
∴在Rt△FAG和Rt△CAB中,
FG=FA×sin∠FAG=4sin30°=2,
AG=FA×cos∠FAG=4cos30°=2$\sqrt{3}$,
AB=AC×tan∠ACB=AC×tan60°=4$\sqrt{3}$,
∴GB=AG+BG=6$\sqrt{3}$
∴在Rt△FBG中,BF=$\sqrt{F{G}^{2}+G{B}^{2}}$=4$\sqrt{7}$.

点评 此题是平行四边形的性质和判定题,还考查等边三角形的判定和性质,锐角三角函数的意义,勾股定理,解本题的关键是得出∠ABC=30°,用锐角三角函数求线段的长是解本题的难点.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

13.图1、图2是两种形状、大小完全相同的方格纸,方格纸中的每个小正方形的边长均为1,每个小正方形的顶点叫做格点.
(1)在图1中画出以AB为腰的等腰三角形ABC,使点C在格点上,且tan∠BAC=$\frac{4}{3}$;
(2)在图1中将△ABC分割2次,分割出3块图形,使这3块图形拼成一个既是轴对称图形又是中心对称图形,拼接后的图形无重叠无空隙(和△ABC的面积相等).要求:在图1中用线段画出分割线,在图2中画出拼接后的图形,此图形的顶点均在格点上,保留拼接痕迹,画出一种即可.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.定义:有一组邻边相等且对角线相等的四边形称为“美好四边形”.
(1)从学过的特殊四边形中,写出一个“美好四边形”;
(2)如图,在4×4的网格图中有A、B两个格点,请在答题卷给出的两个网格图上各找出C、D两个格点,使得以A、B、C、D为顶点的四边形互不全等的“美好四边形”,画出相应的“美好四边形”,并写出该“美好四边形”的对角线长.
(3)如图,已知等边△ABC,在△ABC外存在点D,设∠BDC=α,∠DAC=β,探究α、β满足什么关系时,四边形ABCD为“美好四边形”.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.操作题
如图所示的正方形网格中,△ABC的顶点均在格点上,请在所给直角坐标系中按要求画图和解答下列问题:
(1)作出△ABC关于坐标原点O成中心对称的△A1B1C1
(2)若将△ABC绕某点逆时针旋转90°后,其对应点分别为A2(2,1)、B2(4,0),C2(3,-2),则旋转中心坐标为(0,2).

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.有一张地图,有A、B、C三地,但地图被墨迹污染,C地具体位置看不清楚了,但知道C地在A地的北偏东30°,在B地的南偏东45°,你能帮他确定C地的位置吗?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

8.如图是甲、乙两家商店销售同一种产品的销售价y(元)与销售量x(件)之间的函数图象,下列说法:
①买2件时甲、乙两家售价一样;
②买1件时选乙家的产品合算;
③买3件时选甲家的产品合算;
④买1件时,售价约为3元.
其中正确的说法是(  )
A.①②B.②③C.①②④D.①②③

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.下列各数中,是方程x2=4x-3的解的是(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.如图,在△ABC中,D是BC的中点,E是AD的中点,过点A作AF∥BC,AF与CE的延长线相交于点F,连接BF.
(1)四边形AFBD一定是平行四边形;(不需证明)
(2)将下列命题填写完整,并使命题成立(图中不再添加其它的点和线):
①当△ABC满足条件AB=AC时,四边形AFBD是矩形形(不需证明);
②当△ABC满足条件AB=AC,∠BAC=90°时,四边形AFBD是正方形;并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.(1)解方程:x2+2x-1=0
(2)已知x1,x2是方程2x2-3x-1=0的两个实数根,求(x1-1)(x2-1)的值.

查看答案和解析>>

同步练习册答案