如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.(1)求证:PC是⊙O的切线;(2)若AC=PD,连结BC.求证:AB=2BC
(1)连结OC、OD
在△POC和△POD中,∵OC=OD,PC=PD,PO=PO, ∴△POC≌△POD
∴∠ODP=∠OCP.
∵PD是⊙O的切线,∴∠ODP=90°,∴∠OCP=90°.
∴PC是⊙O的切线.
(2)∵PC、PD是⊙O的两条切线,
∴PC=PD,
又∵AC=PD
∴AC=PC.
∴∠A=∠CPA
设∠A=x,则∠COP=2x,∠CPA=x.在Rt△POC中,2x+x+90°=180°,
∴x=30°.即∠A=30°.
又∵△ABC是Rt△,
∴AB=2BC
【解析】(1)要证PC是⊙O的切线,只要连接OC,OD,通过证明△OCP≌△ODP得出∠OCP=90°即可.
(2)利用直角三角形POC内角和为180°算出∠CPA的度数,从而得出∠A的度数,再根据Rt△ABC的边角关系得出结论。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源:2012届山东省临沂市莒南县九年级上学期期中考试数学试卷(带解析) 题型:解答题
如图,PA是⊙O的割线,且经过圆心O,与⊙O交于B、A两点,PD切⊙O于点D,AC是⊙O的一条弦,连结PC,且PC=PD.(1)求证:PC是⊙O的切线;(2)若AC=PD,连结BC.求证:AB="2BC"
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源:2013年4月中考数学模拟试卷(58)(解析版) 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com