如图,在Rt△ABC中,∠C=90°,以AC为一边向外作等边三角形ACD,点E为AB的中点,连结DE.
![]()
(1)证明DE∥CB;
(2)探索AC与AB满足怎样的数量关系时,四边形DCBE是平行四边形.
(1)首先连接CE,根据直角三角形的性质可得CE=
AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB。
(2)当
或AB=2AC时,四边形DCBE是平行四边形。
【解析】
分析:(1)首先连接CE,根据直角三角形的性质可得CE=
AB=AE,再根据等边三角形的性质可得AD=CD,然后证明△ADE≌△CDE,进而得到∠ADE=∠CDE=30°,再有∠DCB=150°可证明DE∥CB。
(2)当
或AB=2AC时,四边形DCBE是平行四边形。若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°进而得到∠B=30°,再根据三角函数可推出
或AB=2AC。
解:(1)证明:连结CE,
![]()
∵点E为Rt△ACB的斜边AB的中点,
∴CE=
AB=AE。
∵△ACD是等边三角形,∴AD=CD。
在△ADE与△CDE中,
,
∴△ADE≌△CDE(SSS)。∴∠ADE=∠CDE=30°。
∵∠DCB=150°,∴∠EDC+∠DCB=180°。
∴DE∥CB。
(2)∵∠DCB=150°,若四边形DCBE是平行四边形,则DC∥BE,∠DCB+∠B=180°。
∴∠B=30°.
在Rt△ACB中,sinB=
,即sin30°=
,∴
或AB=2AC。
∴当
或AB=2AC时,四边形DCBE是平行四边形。
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
查看答案和解析>>
科目:初中数学 来源: 题型:
| 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com