解:(1)把(-2,a)代入y=2x-1,得:-4-1=a,
解得a=-5.
(2)由(1)知:点P(-2,-5);
则直线L
2的解析式是y=

x;
因此(-2,a)可以看作二元一次方程组

的解.
(3)直线L
1与x轴交于点A(

,0),
所以S
△APO=

×

×5=

.
(4)存在点M,使得点M到x轴和y轴的距离相等.
设点M的坐标为(a,b);
①当a=b时,点M的坐标为(a,a);代入y=2x-1得:2a-1=a,a=1;即点M的坐标为(1,1);
②当a=-b时,点M的坐标为(a,-a);代入y=2x-1得:2a-1=-a,a=

;即点M的坐标为(

,-

).
综上所述,存在符合条件的点M坐标为(1,1)或(

,-

).
分析:(1)由于P是两个函数的交点,因此可将P点坐标代入直线L
1的解析式中,求出a的值.
(2)由于直线L
2过原点,因此一次函数L
2是个正比例函数,根据P点坐标,可确定其解析式.联立两个直线解析式所组成的方程组的解,即为两个函数图象的交点坐标.
(3)根据直线L
1的解析式,可求出A点坐标;以OA为底,P点纵坐标绝对值为高,可求出△OAP的面积.
(4)若点M到x轴、y轴的距离相等,那么点M的坐标有两种情况:
①横坐标与纵坐标相等;②横坐标与纵坐标互为相反数;因此本题要分情况讨论.
点评:本题是一个开放性问题,综合考查了函数图象交点、图形面积求法等知识.解答(4)题时需注意,由于点M的坐标存在两种情况,因此要分类讨论,以免漏解.