精英家教网 > 初中数学 > 题目详情
探索下列∠A与∠P之间的关系,并说明理由.
(1)如图①,BP、CP分别平分∠ABC、∠ACB;
(2)如图②,BP、CP分别平分∠ABC、∠ACB的补角:
(3)如图③,BP平分∠ABC的补角、CP平分∠ACB的补角.
分析:(1)根据BP、CP分别平分∠ABC和∠ACB,得到∠PBC=
1
2
∠ABC,∠PCB=
1
2
∠ACB,求出∠PBC+∠PCB,根据三角形的内角和定理求出∠P即可;
(2)根据∠ACE=∠A+∠ABC,和CP平分∠ACD,BP平分∠ABC,得到∠PBC=
1
2
∠ABC,∠PCA=
1
2
∠ACE=
1
2
∠A+
1
2
∠ABC,根据∠P=180°-(∠PBC+∠PCA+∠ACB),得到
1
2
∠A即可;
(3)根据∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,求出∠DBC+∠ECB,根据BP、CP分别平分∠DBC和∠ECD,得到∠PBC=
1
2
∠DBC,∠PCB=
1
2
∠ECB,求出∠PBC+∠PCB,即可求出答案.
解答:解:(1)∵BP、CP分别平分∠ABC和∠ACB,
∴∠PBC=
1
2
∠ABC,∠PCB=
1
2
∠ACB,
∴∠PBC+∠PCB=
1
2
(∠ABC+∠ACB)=
1
2
×(180°-∠A),
∴∠P=180°-(∠PCB+∠PBC)=90°+
1
2
∠A.

(2)∠ACE=∠A+∠ABC,
∵CP平分∠ACE,BP平分∠ABC,
∴∠PBC=
1
2
∠ABC,∠PCA=
1
2
∠ACE=
1
2
∠A+
1
2
∠ABC,
∴∠P=180°-(∠PBC+∠PCA+∠ACB)=
1
2
∠A;

(3)∵∠DBC=∠A+∠ACB,∠ECB=∠A+∠ABC,
∴∠DBC+∠ECB=∠A+∠ACB+∠A+∠ABC,
∵BP、CP分别平分∠DBC和∠ECD,
∴∠PBC=
1
2
∠DBC,∠PCB=
1
2
∠ECB,
∴∠PBC+∠PCB=
1
2
(∠DBC+∠ECB),
∴∠P=180°-(∠PBC+∠PCB)=180°-
1
2
(∠DBC+∠ECB)=90°-
1
2
∠A.
故答案为:(1)∠P=90°+
1
2
∠A;(2)∠P=∠A;(3)∠P=90°-
1
2
∠A,
点评:本题主要考查对三角形的内角和定理,三角形的外角,角平分线的定义等知识点的理解和掌握,能熟练地运用这些性质进行计算是解此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•衢州)课本中,把长与宽之比为
2
的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=
2
,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

查看答案和解析>>

科目:初中数学 来源:2012年初中毕业升学考试(浙江衢州卷)数学(带解析) 题型:解答题

课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.

(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.

请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

查看答案和解析>>

科目:初中数学 来源:2013-2014学年江苏无锡市九年级第一学期期中考试数学试卷(解析版) 题型:解答题

课本中把长与宽之比为的矩形纸片称为标准纸.请解决下列问题:

(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明;

(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:

第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);

第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙) .此时E点恰好落在AE边上的点M处;

第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.

请你研究,矩形纸片ABCD是否是一张标准纸?请说明理由.

(3)不难发现,将一张标准纸如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索并直接写出第2002次对开后所得标准纸的周长.

 

 

查看答案和解析>>

科目:初中数学 来源:浙江省中考真题 题型:解答题

课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.…


查看答案和解析>>

科目:初中数学 来源:2012年浙江省衢州市中考数学试卷(解析版) 题型:解答题

课本中,把长与宽之比为的矩形纸片称为标准纸.请思考解决下列问题:
(1)将一张标准纸ABCD(AB<BC)对开,如图1所示,所得的矩形纸片ABEF是标准纸.请给予证明.
(2)在一次综合实践课上,小明尝试着将矩形纸片ABCD(AB<BC)进行如下操作:
第一步:沿过A点的直线折叠,使B点落在AD边上点F处,折痕为AE(如图2甲);
第二步:沿过D点的直线折叠,使C点落在AD边上点N处,折痕为DG(如图2乙),此时E点恰好落在AE边上的点M处;
第三步:沿直线DM折叠(如图2丙),此时点G恰好与N点重合.
请你探究:矩形纸片ABCD是否是一张标准纸?请说明理由.
(3)不难发现:将一张标准纸按如图3一次又一次对开后,所得的矩形纸片都是标准纸.现有一张标准纸ABCD,AB=1,BC=,问第5次对开后所得标准纸的周长是多少?探索直接写出第2012次对开后所得标准纸的周长.

查看答案和解析>>

同步练习册答案