精英家教网 > 初中数学 > 题目详情
精英家教网如图,点O是△ABC的两条角平分线的交点,且∠A=40°,则∠BOC=
 
分析:先根据三角形内角和定理得出∠ABC+∠ACB的度数,再由角平分线的定义得出∠1=∠2,∠3=∠4,再根据三角形内角和定理求出∠2+∠4的度数,进而可得出∠BOC的度数.
解答:精英家教网解:∵△ABC中,∠A=40°,
∴∠ABC+∠ACB=180°-∠A=180°-40°=140°,
∵OB、OC分别是∠ABC、∠ACB的平分线,
∴∠1=∠2=
1
2
∠ABC,∠3=∠4=
1
2
∠ACB,
∴∠2+∠4=
1
2
(∠ABC+∠ACB)=
1
2
×140°=70°,
∴∠BOC=180°-(∠2+∠4)=180°-70°=110°.
故答案为:110°.
点评:本题考查的是三角形内角和定理及角平分线的性质,熟知三角形的内角和为180°是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网如图,点F是△ABC外接圆
BC
的中点,点D、E在边AC上,使得AD=AB,BE=EC.证明:B、E、D、F四点共圆.

查看答案和解析>>

科目:初中数学 来源: 题型:

27、如图,点P是△ABC内的一点,有下列结论:①∠BPC>∠A;②∠BPC一定是钝角;③∠BPC=∠A+∠ABP+∠ACP.其中正确的结论共有(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,点O是△ABC内任意一点,G、D、E分别为AC、OA、OB的中点,F为BC上一动点,问四边形GDEF能否为平行四边形?若可以,指出F点位置,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•攀枝花模拟)如图,点G是△ABC的重心,CG的延长线交AB于D,GA=5,GC=4,GB=3,将△ADG绕点D顺时针方向旋转180°得到△BDE,则△EBC的面积=
12
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(1997•天津)如图,点I是△ABC的内心,AI交BC边于D,交△ABC的外接圆于点E.
求证:(1)IE=BE;
      (2)IE是AE和DE的比例中项.

查看答案和解析>>

同步练习册答案