
解:过E作EM⊥AB,EN⊥CD,
∵CD⊥AB,∴EM∥CD,EN∥AB,
∵EF⊥BE,∴∠EFM+∠EBF=90°,
∵∠EBF+∠DGB=90°,∠DGB=∠EGN(对顶角相等)
∴∠EFM=∠EGN,
∴△EFM∽△EGN,
∴

,
在△ADC中,
∵EM∥CD,
∴

,
又CE=kEA,
∴AC=(k+1)AE
∴CD=(k+1)EM,

同理

,
∴AD=

EN,
∵∠ACB=90°,CD⊥AB,AC=mBC
tanA=

=

,
即

=

,
∴

,
∴EF=

EG.
分析:过点E作EM⊥AB,EN⊥CD,根据CD⊥AB和EF⊥BE先证明△EFM与△EGN相似,得到EF:EG=EM:EN,再根据平行线分线段成比例定理求出EM:CG=AE:AC,EN:AD=CE:AC,结合CE=kEA即可用CD、AD表示出EM与EN,再利用∠A的正切值即可求出.
点评:本题难度较大,主要利用相似三角形对应边成比例求解,正确作出辅助线是解本题的关键,这就要求同学们在平时的学习中不断积累经验,开拓视野.