分析 (1)根据等腰三角形的性质,由AB=AC,AD=DC得∠C=∠B,∠1=∠C,则∠1=∠B,根据圆周角定理得∠E=∠B,∠ADE=90°,所以∠1+∠EAD=90°,然后根据切线的判定定理即可得到AC是⊙O的切线;
(2)过点D作DF⊥AC于点F,如图,根据等腰三角形的性质得CF=$\frac{1}{2}$AC=4,在Rt△CDF中,根据已知条件得到DF,DC,利用勾股定理得CF,根据相似三角形的性质即可得到结论.
解答 (1)证明:∵AB=AC,AD=DC,
∴∠C=∠B,∠1=∠C,
∴∠1=∠B,
又∵∠E=∠B,
∴∠1=∠E,
∵AE是⊙O的直径,
∴∠ADE=90°,
∴∠E+∠EAD=90°,
∴∠1+∠EAD=90°,即∠EAC=90°,
∴AE⊥AC,![]()
∴AC是⊙O的切线;
(2)解:过点D作DF⊥AC于点F,如图,
∵DA=DC,
∴CF=$\frac{1}{2}$AC=4,
在Rt△CDF中,∵cosC=$\frac{CF}{CD}$=$\frac{2}{3}$,
∴DC=6,
∴AD=6,
∵∠ADE=∠DFC=90°,∠E=∠C,
∴△ADE∽△DFC,
∴$\frac{AE}{DC}$=$\frac{AD}{DF}$,即$\frac{AE}{6}$=$\frac{6}{\sqrt{{6}^{2}-{4}^{2}}}$,解得AE=$\frac{18\sqrt{5}}{5}$,
即⊙O的直径为$\frac{18\sqrt{5}}{5}$.
点评 本题考查了切线的判定:经过半径的外端且垂直于这条半径的直线是圆的切线.也考查了等腰三角形的性质和相似三角形的判定与性质.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | (1-20%)(1+x)2=1+15% | B. | (1+15%%)(1+x)2=1-20% | ||
| C. | 2(1-20%)(1+x)=1+15% | D. | 2(1+15%)(1+x)=1-20% |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com