精英家教网 > 初中数学 > 题目详情
(1)如图1,在凹四边形ABCD中,∠BDC=135°,∠B=∠C=30°,则∠A=
 
°.
(2)如图2,在凹四边形ABCD中,∠ABD与∠ACD的角平分线交于点E,∠A=60°,∠BDC=140°,则∠E=
 
°.
(3)如图3,∠ABD,∠BAC的角平分线交于点E,∠C=40°,∠BDC=150°,求∠AEB的度数.
(4)如图4,∠BAC,∠BDC的角平分线交于点E,猜想∠B,∠C与∠E之间有怎样的数量关系,并证明你的猜想.
考点:三角形的外角性质,三角形内角和定理
专题:
分析:(1)连接AD并延长,根据三角形外角的性质即可得出结论;
(2)连接BC,由三角形内角和定理求出∠ABC+∠ACB的度数,再根据∠BDC=140°求出∠DBC+∠DCB的度数,根据∠ABD与∠ACD的角平分线交于点E求出∠EBD+∠ECD的度数,根据三角形内角和定理即可得出∠E的度数;
(3)延长BD交AC于点F,根据∠BDC是△CDF的外角可求出∠CFD的度数,再根据∠CFD是△ABF的外角可得出∠BAC+∠ABD的度数,进而得出结论;
(4)由(1)可知,∠BAC+∠B+∠C=∠BDC,再由角平分线的定义可知∠BAE=∠CAE=
1
2
∠BAC,∠BDE=∠CDE=
1
2
∠BDC,由∠1=∠B+∠BAE=∠B+
1
2
∠BAC即可得出结论.
解答:解:(1)连接AD并延长,
∵∠BDF是△ABD的外角,∠CDF是△ACD的外角,
∴∠BDF=∠B+∠BAD,∠CDF=∠C+∠CAD,
∴∠BDF+∠CDF=∠B+∠C+∠BAD+∠CAD,即∠BDC=∠B+∠C+∠BAC,
∵∠BDC=135°,∠B=∠C=30°,
∴∠BAC=∠BDC-∠B-∠C=135°-30°-30°=75°.
故答案为:75;

(2)连接BC,
∵∠A=60°,
∴∠ABC+∠ACB=180°-60°=120°,
∵∠BDC=140°,
∴∠DBC+∠DCB=180°-140°=40°,
∴∠ABD+∠ACD=120°-40°=80°,
∵∠ABD与∠ACD的角平分线交于点E,
∴∠EBD+∠ECD=
1
2
×80°=40°,
∴∠EBC+∠ECB=40°+40°=80°,
∴∠E=180°-(∠EBC+∠ECB)=180°-80°=100°.
故答案为:100;

(3)延长BD交AC于点F,
∵∠BDC是△CDF的外角,∠C=40°,∠BDC=150°,
∴∠CFD=∠BDC-∠C=150°-40°=110°,
∵∠CFD是△ABF的外角,
∴∠BAC+∠ABD=∠CFD=110°,
∵∠ABD,∠BAC的角平分线交于点E,
∴∠BAE+∠ABE=
1
2
(∠BAC+∠ABD)=
1
2
×110°=55°,
∴∠AEB=180°-(∠BAE+∠ABE)=180°-55°=125°;

(4)由(1)可知,∠BAC+∠B+∠C=∠BDC,
∵∠BAC,∠BDC的角平分线交于点E,
∴∠BAE=∠CAE=
1
2
∠BAC,∠BDE=∠CDE=
1
2
∠BDC,
∵∠1=∠B+∠BAE=∠B+
1
2
∠BAC,
∴∠B+
1
2
∠BAC=∠E+
1
2
(∠BAC+∠B+∠C),即∠B-∠C=2∠E.
点评:本题考查的是三角形外角的性质,熟知三角形的一个外角等于和它不相邻的两个内角的和是解答此题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图是某几何体的三种视图,其表面积为(  )
A、2πB、3πC、4πD、5π

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,∠ABC的平分线BD交AC的中垂线DE于D,交AC于H,连接AD,DG⊥BC于G,交AC于K,延长BA至F,使AF=GC,连接DF.
(1)当∠1+2∠2=90°时,证明:DH=DK;
(2)当∠1=∠3时,证明:DF⊥AF.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知x-y=2-
3
,y-z=2+
3
,求(x-y)2+(y-z)2+(z-x)2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知抛物线经过A(-2,0),B(0,2),C(
3
2
,0)三点,一动点P从原点出发以1个单位/秒的速度沿x轴正方向运动,连接BP,过点A作直线BP的垂线交y轴于点Q.设点P的运动时间为t秒.
(1)求抛物线的解析式;
(2)当BQ=
1
2
AP时,求t的值;
(3)随着点P的运动,抛物线上是否存在一点M,使△MPQ为等边三角形?若存在,请直接写t的值及相应点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在△ABC中,点D,E,F分别是AB,BC,CA的中点,AH是边BC上的高.
(1)求证:四边形ADEF是平行四边形;
(2)求证:∠DHF=∠DEF.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,平面直角坐标系中,△ABC的三个顶点A(1,3),B(3,1),C(2,1)
(1)画出△ABC关于y轴的轴对称图形△A1B1C1,并写出C1的坐标是
 

(2)(1)中的△A1B1C1先向下平移3个单位,再向右平移4个单位得△A2B2C2,画出△A2B2C2,并写出线段A1C1变换A2C2的过程中,线段A1C1扫过区域的面积为
 

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知DE∥BC,BE平分∠ABNC,∠C=55°,∠ABC=70°.
①求∠BED的度数(要有说理过程).
②试说明BE⊥EC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线l上有三个正方形A,B,C,且正方形A和C的一边在直线l上,正方形B的一个顶点在直线l上,有两个顶点分别与A和C的一个顶点重合,若A和C的面积分别为7和15,则B的面积为
 

查看答案和解析>>

同步练习册答案