【题目】如图,在Rt△ABC中,∠C=90°,点D是AC的中点,且∠A+∠CDB=90°,过点A,D作⊙O,使圆心O在AB上,⊙O与AB交于点E.
(1)求证:直线BD与⊙O相切;
(2)若AD:AE=,BC=6,求切线BD的长.
【答案】(1)见解析;(2)3.
【解析】
试题分析:(1)如图,连接OD,欲证明直线BD与⊙O相切,只需证明OD⊥BD即可;
(2)连接DE.利用圆周角定理和三角形中位线定理易求DE的长度,而AD:AE=,在直角△ADE中,利用勾股定理即可求得AE的长度;最后利用切割线定理来求切线BD的长度.
(1)证明:∵OA=OD,
∴∠A=∠ADO(等边对等角).
又∵∠A+∠CDB=90°(已知),
∴∠ADO+∠CDB=90°(等量代换),
∴∠ODB=180°﹣(∠ADO+∠CDB)=90°,即BD⊥OD.
又∵OD是圆O的半径.
∴BD是⊙O切线;
(2)解:连接DE,则∠ADE=90°(圆周角定理).
∵∠C=90°,
∴∠ADE=∠C,
∴DE∥BC,
又∵D是AC中点,
∴DE是△ABC的中位线,
∴DE=BC=3,AE=BE.
∵AD:AE=,
在直角△ADE中,利用勾股定理求得AE=3,则AB=6.
∴BD2=ABBE=6×3=54,
∴BD=3.
科目:初中数学 来源: 题型:
【题目】已知反比例函数(k为常数,k≠0)的图象经过点A(2,3).
(1)求这个函数的解析式;
(2)判断点B(-1,6),C(3,2)是否在这个函数的图象上,并说明理由;
(3)当-3<x<-1时,求y的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】去冬今春,某市部分地区遭受了罕见的旱灾,“旱灾无情人有情”.某单位给某镇中小学捐献一批饮用水和蔬菜共320件,其中饮用水比蔬菜多80件.
(1)、求饮用水和蔬菜各有多少件?
(2)、现计划租用甲、乙两种货车共8辆,一次性将这批饮用水和蔬菜全部运往该镇中小学.已知每辆甲种货车最多可装饮用水40件和蔬菜10件,每辆乙种货车最多可装饮用水和蔬菜各20件.则运输部门安排甲、乙两种货车时有几种方案?请你帮助设计出来;
(3)、在(2)的条件下,如果甲种货车每辆需付运费400元,乙种货车每辆需付运费360元.运输部门应选择哪种方案可使运费最少?最少运费是多少元?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com