精英家教网 > 初中数学 > 题目详情

已知函数y=数学公式过点(2,-1),则函数的关系式为________.

y=
分析:用待定系数法确定反比例函数的比例系数k,求出函数解析式.
解答:把点(2,-1)代入y=得,k=-2,
所以函数的关系式为y=
故答案为:y=
点评:此题比较简单,考查的是用待定系数法求反比例函数的解析式,是中学阶段的重点.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知直线L过点A(0,1)和B(1,0),P是x轴正半轴上的动点,OP的垂直平分线交L于点Q,交x轴于点M.
(1)直接写出直线L的解析式;
(2)设OP=t,△OPQ的面积为S,求S关于t的函数关系式;并求出当0<t<2时,S的最大值;
(3)直线L1过点A且与x轴平行,问在L1上是否存在点C,使得△CPQ是以Q为直角顶点的等腰直角精英家教网三角形?若存在,求出点C的坐标,并证明;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知一直线过点(1,a)且与直线y=3x-6平行,与二次函数y=ax2只有一个公共点,则a的值是
 

查看答案和解析>>

科目:初中数学 来源: 题型:

(本题满分12分,任选一题作答.)
Ⅰ、如图①,在平面直角坐标系中,O为坐标原点,边长为5的正三角形OAB的OA边在x轴的正半轴上.点C、D同时从点O出发,点C以1单位长/秒的速度向点A运动,点D以2个单位长/秒的速度沿折线OBA运动.设运动时间为t秒,0<t<5.
(1)当0<t<
52
时,证明DC⊥OA;
(2)若△OCD的面积为S,求S与t的函数关系式;
(3)以点C为中心,将CD所在的直线顺时针旋转60°交AB边于点E,若以O、C、E、D为顶点的四边形是梯形,求点E的坐标.
Ⅱ、(1)如图Ⅱ-1,已知△ABC,过点A画一条平分三角形面积的直线;
(2)如图Ⅱ-2,已知l1∥l2,点E,F在l1上,点G,H在l2上,试说明△EGO与△FHO面积相等.
(3)如图Ⅱ-3,点M在△ABC的边上,过点M画一条平分三角形面积的直线.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知直线l过点(3,0),并且垂直于x轴,从2,3,4,5这四个数中,任取两个数p和q(p≠q),构成函数y=px-2和y=x+q,使两个函数图象的交点在直线l的左侧,则这样的有序数组(p,q)共有(  )

查看答案和解析>>

同步练习册答案