精英家教网 > 初中数学 > 题目详情
如图,BD是∠ABC的平分线,DE⊥AB于E,S△ABC=90,AB=18,BC=12,求DE的长.
分析:过点D作DF⊥BC于F,根据角平分线上的点到角的两边的距离相等可得DE=DF,然后根据三角形的面积列出方程求解即可.
解答:解:如图,过点D作DF⊥BC于F,
∵BD是∠ABC的平分线,DE⊥AB,
∴DE=DF,
∴S△ABC=
1
2
AB•DE+
1
2
BC•DF=90,
1
2
×18•DE+
1
2
×12•DE=90,
解得DE=6.
点评:本题考查了角平分线上的点到角的两边的距离相等的性质,三角形的面积,熟记性质并作出辅助线是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

25、如图,BD是△ABC的角平分线.已知∠1=∠A,∠2=∠3,求△ABC的各个内角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是∠ABC的平分线,DE⊥AB于E,DF⊥BC于F,AB=12,BC=15,S△ABD=36,则S△BCD=
45
45

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是△ABC的角平分线,且BD=BC=AD.
(1)试判断△ABC的形状,并说明理由;
(2)请求出△ABC各角的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,BD是△ABC的中线,若△ABD的面积是10,则△ABC的面积是
20
20

查看答案和解析>>

同步练习册答案