【题目】已知:如图,AB∥CD,∠A = ∠D,试说明 AC∥DE 成立的理由.
下面是彬彬同学进行的推理,请你将彬彬同学的推理过程补充完整。
解:∵ AB ∥ CD (已知)
∴ ∠A = (两直线平行,内错角相等)
又∵ ∠A = ∠D( )
∴ ∠ = ∠ (等量代换)
∴ AC ∥ DE ( )
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,对角线AC、BD交于点O,并且∠DAC=60°,∠ADB=15°.点E是AD边上一动点,延长EO交BC于点F.当点E从D点向A点移动过程中(点E与点D,A不重合),则四边形AFCE的变化是( )
A.平行四边形→矩形→平行四边形→菱形→平行四边形
B.平行四边形→菱形→平行四边形→矩形→平行四边形
C.平行四边形→矩形→平行四边形→正方形→平行四边形
D.平行四边形→矩形→菱形→正方形→平行四边形
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义新运算:.
例如:32=3(3-2)=3,-14=-1(-1-4)=5.
(1)请直接写出3a=b的所有正整数解;
(2)已知2a=5b-2m,3b=5a+m,说明:12a+11b的值与m无关;
(3)已知a>1,记M=abb,N=bab,试比较M,N的大小.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中, △ABC三个顶点的位置如图(每个小正方形的边长均为1).
(1)请画出△ABC沿x轴向右平移3个单位长度,再沿y轴向上平移2个单位长度后的△A′B′C′(其中A′、B′、C′分别是A、B、C的对应点,不写画法)
(2)直接写出A′、B′、C′三点的坐标:
A′(___________); B′(___________);C′(___________)。
(3)求△ABC的面积。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,任意两点A (x1,y1),B (x2,y2)规定运算:①AB=( x1+ x2, y1+ y2);②AB= x1 x2+y1 y2③当x1= x2且y1= y2时A=B有下列四个命题:
(1)若A(1,2),B(2,–1),则AB=(3,1),AB=0;
(2)若AB=BC,则A=C;(3)若AB=BC,则A=C;
(4)对任意点A、B、C,均有(AB ) C=A ( BC )成立.其中正确命题的个数为( )
A. 1个 B. 2个 C. 3个 D.4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,点的坐标为,点的坐标为,且是方程的解.
(1)请求出A、B两点坐标
(2)点在第一象限内,轴,将线段AB进行适当的平移得到线段DC,点A的对应点为D,点B的对应点为C,连接AD,若的面积为12,连接OD,P为y轴上一动点,若使,求此时点P的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com