精英家教网 > 初中数学 > 题目详情
已知两直线L1:y=k1x+b1,L2:y=k2x+b2,若L1⊥L2,则有k1•k2=-1.
(1)应用:已知y=2x+1与y=kx-1垂直,求k;
(2)直线经过A(2,3),且与y=-
1
3
x+3垂直,求解析式.
考点:两条直线相交或平行问题
专题:代数综合题
分析:(1)根据L1⊥L2,则k1•k2=-1,可得出k的值即可;
(2)根据直线互相垂直,则k1•k2=-1,可得出过点A直线的k等于3,得出所求的解析式即可.
解答:解:(1)∵L1⊥L2,则k1•k2=-1,
∴2k=-1,
∴k=-
1
2


(2)∵过点A直线与y=-
1
3
x+3垂直,
∴设过点A直线的直线解析式为y=3x+b,
把A(2,3)代入得,b=-3,
∴解析式为y=3x-3.
点评:本题考查了两直线相交或平行问题,是基础题,当两直线垂直时,两个k值的乘积为-1.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图,某广场一灯柱AB被一钢缆CD固定,CD与地面成45°夹角,且CB=5米.
(1)求钢缆CD的长度;
(2)若AD=2.5米,灯的顶端E距离A处1.6米,且∠EAB=120°,则灯的顶端E距离地面多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

如图:抛物线y=-x2+bx+c交x轴于A、B,直线y=x+2过点A,交y轴于C,交抛物线于D,且D的纵坐标为5.
(1)求抛物线解析式;
(2)点P为抛物线第一象限的图象上的一点,直线PC交x轴于点E,若PC=3CE,求点P的坐标;
(3)在(2)的条件下,点Q为x轴上一点,把△PCQ沿CQ翻折,点P刚好落在x轴上点G处,求Q点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在正方形ABCD中,P是对角线AC上的一点,连接BP、DP,延长BC到E,使PB=PE.求证:∠PDC=∠PEC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,在直角坐标系中,直线y=
1
3
x+1与x轴、y轴的交点分别为A、B,以x=-1为对称轴的抛物线y=-x2+bx+c与x轴分别交于点A、C.
(1)求抛物线的解析式;
(2)若点P是第二象限内抛物线上的动点,其横坐标为t.设抛物线的对称轴l与x轴交于一点D,连接PD,交AB于E,求出当以A、D、E为顶点的三角形与△AOB相似时点P的坐标;
(3)点M是对称轴上任意一点,在抛物线上是否存在点N,使以点A、B、M、N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

计算
(1)计算:2cos30°+(
3
-2)-1+|-
1
2
|
(2)解方程:
3
x2+2x
-
1
x2-2x
=0.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图1,在正方形ABCD中,点E是BC的中点,将△ABE沿AE折叠后得到△AFE,点F在正方形ABCD内部,延长AF交CD于点G.
(1)请判断线段GF与GC的大小关系是
 

(2)若将图1中的正方形改成矩形,其他条件不变,如图2,那么线段GF与GC之间的大小关系是否改变?并证明你的结论.
(3)若将图1中的正方形改为平行四边形,其他条件不变,如图3,那么线段GF与GC之间的大小关系是否会改变?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知反比例函数y=
k
x
的图象经过点M(2,1)
(1)求该函数的表达式;
(2)当2<x<4时,求y的取值范围(直接写出结果).

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,直线a、b被直线c所截,若满足
 
,则a、b平行.

查看答案和解析>>

同步练习册答案