精英家教网 > 初中数学 > 题目详情
如图是我省某地一座抛物线形拱桥,桥拱在竖直平面内,与水平桥面相交于A,B两点,拱桥最高点C到AB的距离为9m,AB=36m,D,E为拱桥底部的两点,且DEAB,点E到直线AB的距离为7m,则DE的长为______m.
如图所示,建立平面直角坐标系.

设AB与y轴交于点H,
∵AB=36,
∴AH=BH=18,
由题可知:
OH=7,CH=9,
∴OC=9+7=16,
设该抛物线的解析式为:y=ax2+k,
∵顶点C(0,16),
∴抛物线y=ax2+16,
代入点(18,7)
∴7=18×18a+16,
∴7=324a+16,
∴324a=-9,
∴a=-
1
36

∴抛物线:y=-
1
36
x2+16,
当y=0时,0=-
1
36
x2+16,
∴-
1
36
x2=-16,
∴x2=16×36=576
∴x=±24,
∴E(24,0),D(-24,0),
∴OE=OD=24,
∴DE=OD+OE=24+24=48,
故答案为48.
练习册系列答案
相关习题

科目:初中数学 来源:不详 题型:解答题

如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c与x轴交于A、B两点,点A在x轴负半轴,点B在x轴正半轴,与y轴交于点C,且tan∠ACO=
1
2
,CO=BO,AB=3,求这条抛物线的函数解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(1,0)、B(3,0)、C(0,3).
(1)试求出抛物线的解析式;
(2)问:在抛物线的对称轴上是否存在一个点Q,使得△QAC的周长最小,试求出△QAC的周长的最小值,并求出点Q的坐标;
(3)现有一个动点P从抛物线的顶点T出发,在对称轴上以1个单位长度每秒的速度向y轴的正方向运动,试问,经过几秒后,△PAC是等腰三角形?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知抛物线y=ax2-k+m与x轴交于A(1,0),B(x2,0),与y轴负半轴交于点C,AB•OC=6,求抛物线解析式.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在Rt△OAB中,∠OAB=90°,∠BOA=30°,AB=2,若以O为坐标原点,OA所在直线为x轴,建立如图所示的平面之间坐标系,点B在第一象限内,将Rt△OAB沿OB折叠后,点A落在第一象限内的点C处.
(1)点C的坐标为______;
(2)若抛物线y=ax2+bx经过C,A两点,求此抛物线的解析式;
(3)若抛物线的对称轴与OB交于点D,点P为线段DB上一点,过P作y轴的平行线,交抛物线于点M,问:是否存在这样的点P,使得四边形CDPM为等腰梯形?若存在,求出此时点P的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

已知AB=2,C是AB上一点,四边形ACDE和四边形CBFG,都是正方形,设BC=x,
(1)AC=______;
(2)设正方形ACDE和四边形CBFG的总面积为S,用x表示S的函数表达式为S=______.
(3)总面积S有最大值还是最小值?这个最大值或最小值是多少?
(4)总面积S取最大值或最小值时,点C在AB的什么位置?

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

在平行四边形ABCD中,过点C作CE⊥CD交AD于点E,将线段EC绕点E逆时针旋转90°得到线段EF(如图1)
(1)在图1中画图探究:
①当P1为射线CD上任意一点(P1不与C重合)时,连接EP1;绕点E逆时针旋转90°得到线段EG1.判断直线FG1与直线CD的位置关系,并加以证明;
②当P2为线段DC的延长线上任意一点时,连接EP2,将线段EP2绕点E逆时针旋转90°得到线段EG2.判断直线G1G2与直线CD的位置关系,画出图形并直接写出你的结论.
(2)若AD=6,tanB=
4
3
,AE=1,在①的条件下,设CP1=x,S△P1FG1=y,求y与x之间的函数关系式,并写出自变量x的取值范围.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

农民张大伯为了致富奔小康,大力发展家庭养殖业.他准备用40m长的木栏围一个矩形的羊圈,为了节约材料同时要使矩形的面积最大,他利用了自家房屋一面长25m的墙,设计了如图一个矩形的羊圈.
(1)请你求出张大伯矩形羊圈的面积;
(2)请你判断他的设计方案是否合理?如果合理,直接答合理;如果不合理又该如何设计并说明理由.

查看答案和解析>>

科目:初中数学 来源:不详 题型:解答题

如图是一个运动员投掷铅球的抛物线图,解析式为y=-
1
12
x2+
2
3
x+
5
3
(单位:米),其中A点为出手点,C点为铅球运行中的最高点,B点铅球落地点.求:
(1)出手点A离地面的高度;
(2)最高点C离地面的高度;
(3)该运动员的成绩是多少米?

查看答案和解析>>

同步练习册答案