精英家教网 > 初中数学 > 题目详情
(2012•溧水县一模)在四边形ABCD中,对角线AC与BD交于点O,△ABO≌△CDO.
(1)求证:四边形ABCD为平行四边形;
(2)若∠ABO=∠DCO,求证:四边形ABCD为矩形.
分析:(1)根据全等三角形的对应边相等可得AO=CO,BO=DO,再根据对角线互相平分的四边形是平行四边形证明;
(2)根据全等三角形对应角相等可得∠BAO=∠DCO,所以∠ABO=∠BAO,再根据等角对等边的性质可得AO=BO,从而得到AC=BD,然后根据对角线相等的平行四边形是矩形证明.
解答:(1)证明:∵△ABO≌△CDO,
∴AO=CO,BO=DO,
∴AC、BD互相平分,
∴四边形ABCD是平行四边形;

(2)证明:∵△ABO≌△CDO,
∴∠BAO=∠DCO,
∵∠ABO=∠DCO,
∴∠ABO=∠BAO,
∴AO=BO,
又∵AO=CO,BO=DO,
∴AC=BD,
∴?ABCD是矩形(对角线相等的平行四边形是矩形).
点评:本题考查了矩形的判定,全等三角形的性质,平行四边形的判定与性质,注意全等三角形对应顶点的字母放在对应位置上是准确找出对应角与对应边的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2012•溧水县一模)七年级我们曾学过“两点之间线段最短”的知识,常可利用它来解决两条线段和最小的相关问题,下面是大家非常熟悉的一道习题:
如图1,已知,A,B在直线l的同一侧,在l上求作一点,使得PA+PB最小.
我们只要作点B关于l的对称点B′,(如图2所示)根据对称性可知,PB=PB'.因此,求AP+BP最小就相当于求AP+PB′最小,显然当A、P、B′在一条直线上时AP+PB′最小,因此连接AB',与直线l的交点就是要求的点P.
有很多问题都可用类似的方法去思考解决.
探究:
(1)如图3,正方形ABCD的边长为2,E为BC的中点,P是BD上一动点.连接EP,CP,则EP+CP的最小值是
5
5

运用:
(2)如图4,平面直角坐标系中有三点A(6,4)、B(4,6)、C(0,2),在x轴上找一点D,使得四边形ABCD的周长最小,则点D的坐标应该是
(2,0)
(2,0)


操作:
(3)如图5,A是锐角MON内部任意一点,在∠MON的两边OM,ON上各求作一点B,C,组成△ABC,使△ABC周长最小.(不写作法,保留作图痕迹)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•溧水县一模)已知a2-a-1=0,则a3-2a+2011=
2012
2012

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•溧水县一模)计算:(
1
2
)-1-20120+|-2
3
|-
12

查看答案和解析>>

科目:初中数学 来源: 题型:

(2012•溧水县一模)解不等式组
3x-1≤2
2-
2-5x
3
<x
并把解集在数轴上表示出来.

查看答案和解析>>

同步练习册答案