精英家教网 > 初中数学 > 题目详情

关于x的一元二次方程x2-6x+k=0的一个根是2.
(1)求k的值和方程的另一个根x2
(2)若直线AB经过点A(2,0),B(0,x2),求直线AB的解析式;
(3)在平面直角坐标系中画出直线AB的图象,P是x轴上一动点,是否存在点P,使△ABP是直角三角形,若存在,求出点P坐标,若不存在,说明理由.

解:(1)∵2是一元二次方程x2-6x+k=0的一个根,
∴2-12+k=0,
∴k=8.(2分)
∴一元二次方程为x2-6x+8=0,
∴(x-2)(x-4)=0,
∴x1=2,x2=4
∴一元二次方程为x2-6x+8=0的另一个根x2=4.(4分)

(2)设直线AB的解析式为y=kx+b(k≠0)
∵直线AB经过点A(2,0),B(0,4)

解得k=-2,b=4(6分)
直线AB的解析式:y=-2x+4.(8分)

(3)画图正确(9分)
第一种:AB是斜边,∠APB=90°
∵∠AOB=90°,
∴当点P与原点O重合时,∠APB=90°,
∴当点P的坐标为(0,0),△ABP是直角三角形.(11分)
第二种:设AB是直角边,点B为直角顶点,即∠ABP=90°
∵线段AB在第一象限,
∴这时点P在x轴负半轴.
设P的坐标为(x,0)
∵A(2,0),B(0,4)
∴OA=2,OB=4,OP=-x,
∴BP2=OP2+OB2=x2+42,AB2=OA2+OB2=22+42,AP2=(OA+OP)2=(2-x)2
∵AP2=BP2+AB2
∴x2+42+22+42=(2-x)2
解得x=-8
∴当点P的坐标为(-8,0),△ABP是直角三角形.(13分)
第三种:设AB是直角边,点A为直角顶点,即∠BAP=90°
∵点A在x轴上,点P是x轴上的动点,
∴∠BAP>90°
∴∠BAP=90°的情况不存在.(14分)
∴当点P的坐标为(-8,0)或(0,0)时,△ABP是直角三角形.
分析:(1)利用一元二次方程的解的定义,将x=2代入原方程,列出关于k的方程,通过解方程求得k值后,再根据根与系数的关系求得方程的另一个根;
(2)利用待定系数法求一次函数的解析式;
(3)分类讨论:①AB是斜边,∠APB=90°;②AB是直角边,点B为直角顶点,即∠ABP=90°;③设AB是直角边,点A为直角顶点,即∠BAP=90°.
点评:本题综合考查了一元二次方程的解、待定系数法求一次函数的解析式、根与系数的关系、勾股定理的逆定理等知识点.注意:第(2)题需要分类讨论.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•北仑区二模)若关于x的一元二次方程a(x+m)2=3两个实根为x1=-1,x2=3,则抛物线y=a(x+m-2)2-3与x轴的交点橫坐标分别是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程(m-2)xm2-5m-8+(m-3)x+5=0是关于x的一元二次方程,则m=
65
2
65
2

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•沈阳)若关于x的一元二次方程x2+4x+a=0有两个不相等的实数根,则a的取值范围是
a<4
a<4

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•兰州一模)若x1,x2是关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根,则方程的两个根x1,x2和系数a,b,c有如下关系:x1+x2=-
b
a
,x1•x2=
c
a
,把它们称为一元二次方程根与系数关系定理,请利用此定理解答一下问题:
已知x1,x2是一员二次方程(m-3)x2+2mx+m=0的两个实数根.
(1)是否存在实数m,使-x1+x1x2=4+x2成立?若存在,求出m的值,若不存在,请你说明理由;
(2)若|x1-x2|=
3
,求m的值和此时方程的两根.

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•泸州)若关于x的一元二次方程kx2-2x-1=0有两个不相等的实数根,则实数k的取值范围是(  )

查看答案和解析>>

同步练习册答案