精英家教网 > 初中数学 > 题目详情

直线y=-x与直线y=-x+1之间的距离是________.


分析:作出图形,根据k=-1可得两直线与坐标轴的夹角为45°,利用45°角的正弦值求解即可.
解答:解:∵k=-1,
∴两直线与坐标轴的夹角的锐角是45°,
又∵直线y=-x+1,x=0时,y=1,
∴直线y=-x与直线y=-x+1之间的距离是:1×sin45°=
故答案为:
点评:本题考查了两条直线的平行问题,根据k=-1得到直线与坐标轴的夹角是45°是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

精英家教网已知抛物线y=x2-2x+6-m与直线y=-2x+6+m,它们的一个交点的纵坐标是4.
(1)求抛物线和直线的解析式;
(2)如图,直线y=kx(k>0)与(1)中的抛物线交于两个不同的点A、B,与(1)中的直线交于点P,试证明:
OP
PA
+
OP
OB
=2;
(3)在(2)中能否适当选取k值,使A、B两点的纵坐标之和等于8?如果能,求出此时的k值;如果不能请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:阅读理解

阅读:我们知道,在数轴上x=1表示一个点,而平面直角坐标系中,x=1表示一条直线;我们还知道,以二元一次方程2x-y+1=0的所有解为坐标的点组成的图形就是一次函数y=2x+1的图象,它也是一条直线,如图①.观察图①可以得出:直线x=1与直线y=2x+1的交P的坐标(1,3)就是方程组
x=1
2x-y+1=0
的解,所以这个方程组的解是
x=1
y=3
在直角坐标系中,x≤1表示一个平面区域,即直线x=1以及它的左侧部分,如图②;y≤2x+1也表示一个平面区域,即直线y=2x+1以及它的右下方的部分,如图③.
回答下列问题:
(1)在直角坐标系(图④)中,用作图象的方法求出方程组
x=-2
y=-2x+2
的解;
(2)用阴影部分表示不等式组
x≥-2
y≤-2x+2
y≥0
所围成的平面区域,并求围成区域的面积;
(3)现有一直角三角形(其中∠A=90°,AB=2,AC=4)小车沿x轴自左向右运动,当点A到达何位置时,小车被阴影部分挡住的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

(2011•盘锦)如图,直线y=
m3
x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,直线y=数学公式x+m(m≠0)交x轴负半轴于点A、交y轴正半轴于点B且AB=5,过点A作直线AC⊥AB交y轴于点C.点E从坐标原点O出发,以0.8个单位/秒的速度沿y轴向上运动;与此同时直线l从与直线AC重合的位置出发,以1个单位/秒的速度沿射线AB方向平行移动.直线l在平移过程中交射线AB于点F、交y轴于点G.设点E离开坐标原点O的时间为t(t≥0)s.
(1)求直线AC的解析式;
(2)直线l在平移过程中,请直接写出△BOF为等腰三角形时点F的坐标;
(3)直线l在平移过程中,设点E到直线l的距离为d,求d与t的函数关系.

查看答案和解析>>

科目:初中数学 来源:四川省期末题 题型:解答题

如图,在平面直角坐标系中,点A、B分别在x轴、y轴上,线段OA、OB的长(0A<OB)是方程组的解,点C是直线y=2x与直线AB的交点,点D在线段OC上,OD=
(1)求直线AB的解析式及点C的坐标;
(2)求直线AD的解析式;
(3)P是直线AD上的点,在平面内是否存在点Q,使以0、A、P、Q为顶点的四边形是菱形?若存在,请直接写出点Q的坐标;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案