精英家教网 > 初中数学 > 题目详情

为响应国家节能减排的号召,鼓励居民节约用电,各省先后出台了居民用电“阶梯价格”制度,如表中是某省的电价标准(每月).例如:方女士家5月份用电500度,电费=180×0.6+220×二档电价+100×三档电价=352元;李先生家5月份用电460度,交费316元,请问表中二档电价、三档电价各是多少?

阶梯

电量

电价

一档

0﹣180度

0.6元/度

二档

181﹣400度

二档电价

三档

401度及以上

三档电价


解:设二档电价是x元/度、三档电价是y元/度,

根据题意得,

解得

答:二档电价是0.7元/度、三档电价是0.9元/度.


练习册系列答案
相关习题

科目:初中数学 来源: 题型:


下列各数是负数的是(  )

A.0      B.      C.2.5      D.﹣1

查看答案和解析>>

科目:初中数学 来源: 题型:


“梅花朵朵迎春来”,下面四个图形是由小梅花摆成的一组有规律的图案,按图中规律,第n个图形中小梅花的个数是       

 

查看答案和解析>>

科目:初中数学 来源: 题型:


.下列一元二次方程中,有两个相等实数根的是(  )

    A. x2﹣8=0 B.   2x2﹣4x+3=0               C.                             9x2+6x+1=0     D. 5x+2=3x2

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,是矗立在高速公路水平地面上的交通警示牌,经测量得到如下数据:AM=4米,AB=8米,∠MAD=45°,∠MBC=30°,则警示牌的高CD为  米(结果精确到0.1米,参考数据:=1.41,=1.73).

查看答案和解析>>

科目:初中数学 来源: 题型:


问题:如图(1),在Rt△ACB中,∠ACB=90°,AC=CB,∠DCE=45°,试探究AD、DE、EB满足的等量关系.

[探究发现]

小聪同学利用图形变换,将△CAD绕点C逆时针旋转90°得到△CBH,连接EH,由已知条件易得∠EBH=90°,∠ECH=∠ECB+∠BCH=∠ECB+∠ACD=45°.

根据“边角边”,可证△CEH≌   ,得EH=ED.

在Rt△HBE中,由   定理,可得BH2+EB2=EH2,由BH=AD,可得AD、DE、EB之间的等量关系是   

[实践运用]

(1)如图(2),在正方形ABCD中,△AEF的顶点E、F分别在BC、CD边上,高AG与正方形的边长相等,求∠EAF的度数;

(2)在(1)条件下,连接BD,分别交AE、AF于点M、N,若BE=2,DF=3,BM=2,运用小聪同学探究的结论,求正方形的边长及MN的长.

查看答案和解析>>

科目:初中数学 来源: 题型:


2015年5月31日,我国飞人苏炳添在美国尤金举行的国际田联钻石联赛100米男子比赛中,获得好成绩,成为历史上首位突破10秒大关的黄种人.如表是苏炳添近五次大赛参赛情况:

比赛日期

2012﹣8﹣4

2013﹣5﹣21

2014﹣9﹣28

2015﹣5﹣20

2015﹣5﹣31

比赛地点

英国伦敦

中国北京

韩国仁川

中国北京

美国尤金

成绩(秒)

10.19

10.06

10.10

10.06

9.99

则苏炳添这五次比赛成绩的众数和平均数分别为(  )

    A.10.06秒,10.06秒                             B. 10.10秒,10.06秒

    C.10.06秒,10.08秒                             D.  10.08秒,10.06秒

查看答案和解析>>

科目:初中数学 来源: 题型:


如图,大楼AN上悬挂一条幅AB,小颖在坡面D处测得条幅顶部A的仰角为30°,沿坡面向下走到坡脚E处,然后向大楼方向继续行走10米来到C处,测得条幅的底部B的仰角为45°,此时小颖距大楼底端N处20米.已知坡面DE=20米,山坡的坡度i=1:(即tan∠DEM=1:),且D、M、E、C、N、B、A在同一平面内,E、C、N在同一条直线上,求条幅的长度(结果精确到1米)(参考数据:≈1.73,≈1.41)

查看答案和解析>>

科目:初中数学 来源: 题型:


根据最新年度报告,全球互联网用户达到3 200 000 000人,请将3 200 000 000用科学记数法表示 

查看答案和解析>>

同步练习册答案