精英家教网 > 初中数学 > 题目详情
(2006•大连)如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.操作:以PA、PC为邻边作平行四边形PADC,连续PM并延长到点E,使ME=PM,连接DE.
探究:
(1)请猜想与线段DE有关的三个结论;
(2)请你利用图2,图3选择不同位置的点P按上述方法操作;
(3)经历(2)之后,如果你认为你写的结论是正确的,请加以证明;
如果你认为你写的结论是错误的,请用图2或图3加以说明;
(注意:错误的结论,只要你用反例给予说明也得分)
(4)若将“Rt△ABC”改为“任意△ABC”,其他条件不变,利用图4操作,并写出与线段DE有关的结论(直接写答案).

【答案】分析:连接BE,根据边角边可证△PAM和△EBM全等,可得EB和PA既平行又相等,而PA和CD既平行且相等,所以DE和BC平行相等,又因为BC⊥AC,所以DE也和AC垂直.以下几种情况虽然图象有所变化,但是证明方法一致.
解答:解:(1)DE∥BC,DE=BC,DE⊥AC.

(2)如图4,如图5.

(3)方法一:
如图6,
连接BE,
∵PM=ME,AM=MB,∠PMA=∠EMB,
∴△PMA≌△EMB.
∵PA=BE,∠MPA=∠MEB,
∴PA∥BE.
∵平行四边形PADC,
∴PA∥DC,PA=DC.
∴BE∥DC,BE=DC,
∴四边形DEBC是平行四边形.
∴DE∥BC,DE=BC.
∵∠ACB=90°,
∴BC⊥AC,
∴DE⊥AC.

方法二:
如图7,连接BE,PB,AE,
∵PM=ME,AM=MB,
∴四边形PAEB是平行四边形.
∴PA∥BE,PA=BE,
余下部分同方法一:

方法三:
如图8,连接PD,交AC于N,连接MN,
∵平行四边形PADC,
∴AN=NC,PN=ND.
∵AM=BM,AN=NC,
∴MN∥BC,MN=BC.
又∵PN=ND,PM=ME,
∴MN∥DE,MN=DE.
∴DE∥BC,DE=BC.
∵∠ACB=90°,
∴BC⊥AC.
∴DE⊥AC.

(4)如图9,DE∥BC,DE=BC.

点评:此题主要考查了平行四边形的性质和判定,以及全等的应用,难易程度适中.
练习册系列答案
相关习题

科目:初中数学 来源:2006年全国中考数学试题汇编《二次函数》(10)(解析版) 题型:解答题

(2006•大连)如图,抛物线E:y=x2+4x+3交x轴于A、B两点,交y轴于M点,抛物线E关于y轴对称的抛物线F交x轴于C、D两点.
(1)求F的解析式;
(2)在x轴上方的抛物线F或E上是否存在一点N,使以A、C、N、M为顶点的四边形是平行四边形?若存在,求点N的坐标;若不存在,请说明理由;
(3)若将抛物线E的解析式改为y=ax2+bx+c,试探索问题(2).

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《一次函数》(06)(解析版) 题型:解答题

(2006•大连)如图,在大连到烟台160千米的航线上,某轮船公司每天上午8点(x轴上0小时)到下午16点每隔2小时有一只轮船从大连开往烟台,同时也有一只轮船从烟台开往大连,轮船在途中花费8小时,求:今天上午8点从大连开往烟台的轮船在航行途中(不包括大连和烟台)遇到几只从对面开来的本公司的轮船,在遇到第三只从对面开来的本公司轮船时的时间及离大连的距离.

查看答案和解析>>

科目:初中数学 来源:2006年辽宁省大连市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•大连)如图,抛物线E:y=x2+4x+3交x轴于A、B两点,交y轴于M点,抛物线E关于y轴对称的抛物线F交x轴于C、D两点.
(1)求F的解析式;
(2)在x轴上方的抛物线F或E上是否存在一点N,使以A、C、N、M为顶点的四边形是平行四边形?若存在,求点N的坐标;若不存在,请说明理由;
(3)若将抛物线E的解析式改为y=ax2+bx+c,试探索问题(2).

查看答案和解析>>

科目:初中数学 来源:2006年辽宁省大连市中考数学试卷(大纲卷)(解析版) 题型:解答题

(2006•大连)如图,在大连到烟台160千米的航线上,某轮船公司每天上午8点(x轴上0小时)到下午16点每隔2小时有一只轮船从大连开往烟台,同时也有一只轮船从烟台开往大连,轮船在途中花费8小时,求:今天上午8点从大连开往烟台的轮船在航行途中(不包括大连和烟台)遇到几只从对面开来的本公司的轮船,在遇到第三只从对面开来的本公司轮船时的时间及离大连的距离.

查看答案和解析>>

科目:初中数学 来源:2006年全国中考数学试题汇编《图形认识初步》(02)(解析版) 题型:选择题

(2006•大连)如图,∠PQR等于138°,SQ⊥QR,QT⊥PQ.则∠SQT等于( )

A.42°
B.64°
C.48°
D.24°

查看答案和解析>>

同步练习册答案