精英家教网 > 初中数学 > 题目详情

已知如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,AN交CM于点E,BM交CN于点F,求证:
(1)CE=CF;(2)EF∥AB.

证明:(1)∵△ACM,△CBN是等边三角形,
∴AC=MC,BC=NC,∠ACM=60°,∠NCB=60°,
∴∠ACM+∠MCN=∠NCB+∠MCN,
即:∠ACN=∠MCB,
在△CAN和△MCB中,
AC=MC,∠ACN=∠MCB,NC=BC,
∴△CAN≌△MCB(SAS),
∴∠CMB=∠CAN
又∵∠ACM=∠MCN=60°,AC=NC
∴△ACE≌△MCF
∴CE=CF.

(2)∵△CAN≌△CMB,
∴∠CAN=∠CMB,
又∵∠MCF=180°-∠ACM-∠NCB=180°-60°-60°=60°,
∴∠MCF=∠ACE,
在△CAE和△CMF中,

∴△CAE≌△CMF(ASA),
∴CE=CF,
∴△CEF为等腰三角形,
又∵∠ECF=60°,
∴△CEF为等边三角形.
∴∠CEF=∠MCA=60°
∴EF∥AB
分析:(1)由等边三角形可得其对应线段相等,对应角相等,进而可由SAS得到△CAN≌△MCB,结论得证;
(2)由(1)中的全等可得∠CAN=∠MCB,进而得出∠MCF=∠ACE,由ASA得出△CAE≌△CMF,即CE=CF,又ECF=60°,所以△CEF为等边三角形.从而利用等边三角形的性质判定平行.
点评:本题主要考查了全等三角形的判定及性质以及等边三角形的判定问题,能够掌握并熟练运用.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(1)已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度.精英家教网
(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律;
(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知如图,点C为线段AB上一点,△ACM、△CBN都是等边三角形,AN交CM于点E,BM交CN于点F,求证:
(1)CE=CF;(2)EF∥AB.

查看答案和解析>>

科目:初中数学 来源:四川省期末题 题型:解答题

(1)已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点,求MN的长度.
(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律;
(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由.

查看答案和解析>>

科目:初中数学 来源:四川省期末题 题型:解答题

已知如图,点C在线段AB上,线段AC=10,BC=6,点M、N分别是AC、BC的中点。
(1)求MN的长度。
(2)根据(1)的计算过程与结果,设AC+BC=a,其它条件不变,你能猜想出MN的长度吗?请用一句简洁的语言表达你发现的规律;
(3)若把(1)中的“点C在线段AB上”改为“点C在直线AB上”,结论又如何?请说明理由。

查看答案和解析>>

同步练习册答案