数学英语物理化学 生物地理
数学英语已回答习题未回答习题题目汇总试卷汇总练习册解析答案
分析 由切线的性质可知OQ⊥PQ,在Rt△OPQ中,OQ=5,则可知当OP最小时,PQ有最小值,当OP⊥l时,OP最小,利用勾股定理可求得PQ的最小值.
解答 解:∵PQ与⊙O相切于点Q,∴OQ⊥PQ,∴PQ2=OP2-OQ2=OP2-52=OP2-25,∴当OP最小时,PQ有最小值,∵点O到直线l的距离为7,∴OP的最小值为7,∴PQ的最小值=$\sqrt{{7}^{2}-25}$=2$\sqrt{6}$,故答案为:2$\sqrt{6}$.
点评 本题主要考查切线的性质,掌握过切点的半径与切线垂直是解题的关键.
科目:初中数学 来源: 题型:填空题
科目:初中数学 来源: 题型:选择题
国际学校优选 - 练习册列表 - 试题列表
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区