精英家教网 > 初中数学 > 题目详情

已知二次函数y=ax2+bx+c(a>0)的图象与x轴交于A(x1,0)、B(x2,0)(x1<x2)两点,与y轴交于点C,x1,x2是方程x2+4x﹣5=0的两根.
(1)若抛物线的顶点为D,求S△ABC:S△ACD的值;
(2)若∠ADC=90°,求二次函数的解析式.

(1)1:1;(2)y=x2+x﹣

解析试题分析:(1)首先解一元二次方程,求出点A、点B的坐标,得到含有字母a的抛物线的交点式;然后分别用含字母a的代数式表示出△ABC与△ACD的面积,最后得出结论;
(2)在Rt△ACD中,利用勾股定理,列出一元二次方程,求出未知系数a,得出抛物线的解析式.
试题解析:(1)解方程x2+4x-5=0,得x=-5或x=1,
由于x1<x2,则有x1=-5,x2=1,
∴A(-5,0),B(1,0).
抛物线的解析式为:y=a(x+5)(x-1)(a>0),
∴对称轴为直线x=-2,顶点D的坐标为(-2,-9a),

令x=0,得y=-5a,
∴C点的坐标为(0,-5a).
依题意画出图形,如右图所示,则OA=5,OB=1,AB=6,OC=5a,
过点D作DE⊥y轴于点E,则DE=2,OE=9a,CE=OE-OC=4a.
S△ACD=S梯形ADEO-S△CDE-S△AOC
=(DE+OA)•OE-DE•CE-OA•OC=(2+5)•9a-×2×4a-×5×5a=15a,
而S△ABC=AB•OC=×6×5a=15a,
∴S△ABC:S△ACD=15a:15a=1:1;
(2)如解答图,过点D作DE⊥y轴于E
在Rt△DCE中,由勾股定理得:CD2=DE2+CE2=4+16a2
在Rt△AOC中,由勾股定理得:AC2=OA2+OC2=25+25a2
设对称轴x=-2与x轴交于点F,则AF=3,
在Rt△ADF中,由勾股定理得:AD2=AF2+DF2=9+81a2
∵∠ADC=90°,∴△ACD为直角三角形,
由勾股定理得:AD2+CD2=AC2
即(9+81a2)+(4+16a2)=25+25a2,化简得:a2=
∵a>0,
∴a=
∴抛物线的解析式为:y=(x+5)(x﹣1)=x2+x﹣
考点: 二次函数综合题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

已知抛物线与x轴相交于两点A(1,0),B(-3,0),与y轴相交于点C(0,3).
(1)求此抛物线的函数表达式;
(2)如果点是抛物线上的一点,求△ABD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

高盛超市准备进一批季节性小家电,每个进价为40元,经市场预测,销售定价为50元,可售出400个;定价每增加1元,销售量将减少10个.
(1)设每个小家电定价增加元,每售出一个小家电可获得的利润是多少元?(用含的代数式表示)
(2)当定价增加多少元时,商店获得利润6000元 ?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知关于x的方程
(1)当k取何值时,方程有两个实数根;
(2)若二次函数的图象与轴两个交点的横坐标均为整数,且k为正整数,求k值并用配方法求出抛物线的顶点坐标;
(3)若(2)中的抛物线与x轴交于A、B两点,与y轴交于C点.将抛物线向上平移n个单位,使平移后得到的抛物线的顶点落在△ABC的内部(不包括△ABC的边界),写出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,抛物线y=ax2+bx+c与x轴的一个交点A的坐标为(﹣1,0),对称轴为直线x=﹣2.

(1)求抛物线与x轴的另一个交点B的坐标;
(2)点D是抛物线与y轴的交点,点C是抛物线上的另一点.若以AB为一底边的梯形ABCD的面积为9.
求此抛物线的解析式,并指出顶点E的坐标;
(3)点P是(2)中抛物线对称轴上一动点,且以1个单位/秒的速度从此抛物线的顶点E向上运动.设点P运动的时间为t秒.
①当t为   秒时,△PAD的周长最小?当t为     秒时,△PAD是以AD为腰的等腰三角形?(结果保留根号)
②点P在运动过程中,是否存在一点P,使△PAD是以AD为斜边的直角三角形?若存在,求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

天猫商城旗舰店销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:,在销售过程中销售单价不低于成本价,而每件的利润不高于成本价的60%.
(1)设该旗舰店每月获得利润为w(元),求每月获得利润w(元)与销售单价x(元)之间的函数关系式,并确定自变量x的取值范围.
(2)当销售单价定为多少元时,每月可获得最大利润?每月的最大利润是多少?
(3)如果旗舰店想要每月获得的利润不低于2000元,那么每月的成本最少需要     元?
(成本=进价×销售量)

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

已知二次函数y=x2+2x-1.
(1)写出它的顶点坐标;
(2)当x取何值时,y随x的增大而增大;
(3)求出图象与轴的交点坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

如图,已知二次函数y=x2+bx+c过点A(1,0),C(0,﹣3)

(1)求此二次函数的解析式;
(2)在抛物线上存在一点P使△ABP的面积为10,请直接写出点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

二次函数的图象经过点
(1)求此二次函数的关系式;
(2)求此二次函数图象的顶点坐标;
(3)填空:把二次函数的图象沿坐标轴方向最少平移  个单位,使得该图象的顶点在原点.

查看答案和解析>>

同步练习册答案