精英家教网 > 初中数学 > 题目详情

如图,在△ABC中,D是BC边的中点,F,E分别是AD及其延长线上的点,CF∥BE,连接BF,CE.试判断四边形BECF是何种特殊四边形,并说明理由.

解:四边形BECF为平行四边形.
证明:连接CE.
∵∠CFD=∠BED,∠CDF=∠BDE,BD=CD,
∴△CDF≌△BDE(AAS),
∴BE=CF,
又∵CF∥BE,
∴四边形BECF为平行四边形.
分析:根据∠CFD=∠BED,∠CDF=∠BDE,BD=CD,可以判定△CDF≌△BDE,即BE=CF,又∵CF∥BE,即可证明四边形BECF为平行四边形.
点评:本题考查了平行四边形的判定方法,一组对边平行且相等判定四边形为平行四边形的方法,本题中求证△CDF≌△BDE是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

20、如图,在△ABC中,∠BAC=45°,现将△ABC绕点A逆时针旋转30°至△ADE的位置,使AC⊥DE,则∠B=
75
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,∠ACB=90°,AC=BC=1,取斜边的中点,向斜边作垂线,画出一个新的等腰三角形,如此继续下去,直到所画出的直角三角形的斜边与△ABC的BC重叠,这时这个三角形的斜边为
(  )
A、
1
2
B、(
2
2
7
C、
1
4
D、
1
8

查看答案和解析>>

科目:初中数学 来源: 题型:

2、如图,在△ABC中,DE∥BC,那么图中与∠1相等的角是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

精英家教网如图,在△ABC中,AB=AC,且∠A=100°,∠B=
 
度.

查看答案和解析>>

科目:初中数学 来源: 题型:

14、如图,在△ABC中,AB=BC,边BC的垂直平分线分别交AB、BC于点E、D,若BC=10,AC=6cm,则△ACE的周长是
16
cm.

查看答案和解析>>

同步练习册答案